Journal of Mathematical Chemistry

, Volume 55, Issue 3, pp 849–863 | Cite as

Super face d-antimagic labeling for disjoint union of toroidal fullerenes

  • Shahid Imran
  • Muhammad Hussain
  • Muhammad Kamran Siddiqui
  • Muhammad Numan
Original Paper


The discovery of the fullerene molecules and related forms of carbon such as nanotubes has generated an explosion of activity in chemistry, physics, and materials science. Classical fullerene is an all-carbon molecule in which the atoms are arranged on a pseudospherical framework made up entirely of pentagons and hexagons. A toroidal fullerene (toroidal polyhex) is a cubic bipartite graph embedded on the torus such that each face is a hexagon. In this paper we examine the existence of entire labeling, where face-weights of all 6-sided faces of disjoint union of toroidal fullerenes form an arithmetic progression with common difference \(\hbox {d}\in \{1,2,3\}\).


Disjoint union Toroidal fullerene Toroidal polyhex Super d-antimagic labeling 

Mathematics Subject Classification



  1. 1.
    G. Ali, M. Bac̆a, F. Bashir, A. Semanic̆ová-Fen̆ovc̆íková, On face antimagic labelings of disjoint union of prisms. Util. Math. 85, 97–112 (2011)Google Scholar
  2. 2.
    M. Bac̆a, On magic labelings of grid graphs. Ars Comb. 33, 295–299 (1992)Google Scholar
  3. 3.
    M. Bac̆a, On magic labelings of honeycomb. Discrete Math. 105, 305–311 (1992)CrossRefGoogle Scholar
  4. 4.
    M. Bac̆a, F. Bashir, A. Semanic̆ová, Face antimagic labelings of antiprisms. Util. Math. 84, 209–224 (2011)Google Scholar
  5. 5.
    M. Bac̆a, L. Brankovic, A. Semanic̆ová-Fen̆ovc̆íková, Labelings of plane graphs containing Hamilton path. Acta Math. Sin. Engl. Ser. 27(4), 701–714 (2011)CrossRefGoogle Scholar
  6. 6.
    M. Bac̆a, S. Jendrol̆, M. Miller, J. Ryan, Antimagic labelings of generalized Petersen graphs that are plane. Ars Comb. 73, 115–128 (2004)Google Scholar
  7. 7.
    M. Bac̆a, E.T. Baskoro, S. Jendrol̆, M. Miller, Antimagic labelings of hexagonal planar maps. Util. Math. 66, 231–238 (2004)Google Scholar
  8. 8.
    M. Bacc̆a, M. Lascsáková, M.K. Siddiqui, Total edge irregularity strength of toroidal fullerene. Math. Comput. Sci. 7, 487–492 (2013)CrossRefGoogle Scholar
  9. 9.
    M. Bac̆a, Y. Lin, M. Miller, Antimagic labelings of grids. Util. Math. 72, 65–75 (2007)Google Scholar
  10. 10.
    M. Bac̆a, M. Miller, On \(d\)-antimagic labelings of type (1,1,1) for prisms. J. Comb. Math. Comb. Comput. 44, 199–207 (2003)Google Scholar
  11. 11.
    M. Bac̆a, M. Miller, O. Phanalasy, A. Semanic̆ová-Fen̆ovc̆íková, Super \(d\)-antimagic labelings of disconnected plane graphs. Acta Math. Sin. Engl. Ser. 26(12), 2283–2294 (2010)CrossRefGoogle Scholar
  12. 12.
    M. Bac̆a, M. Numan, A. Shabbir, Labelings of type (1,1,1) for toroidal fullerenes. Turkish J. Math. 37, 899–907 (2013)Google Scholar
  13. 13.
    K. Choho, W. Langenaeker, G. Van De Woude, P. Geerlings, Reactivity of fullerenes. Quantum-chemical descriptors versus curvature. J. Mol. Struct. 338, 293–301 (1995)CrossRefGoogle Scholar
  14. 14.
    M. Deza, P.W. Fowler, A. Rassat, K.M. Rogers, Fullerenes as tilings of surfaces. J. Chem. Inf. Comput. Sci. 40, 550–558 (2000)CrossRefGoogle Scholar
  15. 15.
    D.J. Klein, Elemental benzenoids. J. Chem. Inf. Comput. Sci. 34, 453–459 (1994)CrossRefGoogle Scholar
  16. 16.
    D.J. Klein, H. Zhu, Resonance in elemental benzenoids. Discrete Appl. Math. 67, 157–173 (1996)CrossRefGoogle Scholar
  17. 17.
    K.W. Lih, On magic and consecutive labelings of plane graphs. Util. Math. 24, 165–197 (1983)Google Scholar
  18. 18.
    T.G. Schmalz, W.A. Seitz, D.J. Klein, G.E. Hite, Elemental carbon cages. J. Am. Chem. Soc. 110, 1113–1127 (1988)CrossRefGoogle Scholar
  19. 19.
    N. Sizochenko, V. Kuz’min, L. Ognichenko, J. Leszczynski, Introduction of simplex-informational descriptors for QSPR analysis of fullerene derivatives. J. Math. Chem. 54, 698–706 (2016)CrossRefGoogle Scholar
  20. 20.
    D. Ye, Z. Qi, H. Zhang, On k-resonant fullerene graphs. SIAM J. Discrete Math. 23(2), 1023–1044 (2009)CrossRefGoogle Scholar
  21. 21.
    D. Ye, H. Zhang, 2-extendability of toroidal polyhexes and Klein-bottle polyhexes. Discrete Appl. Math. 157(2), 292–299 (2009)CrossRefGoogle Scholar
  22. 22.
    D. Ye, H. Zhang, Extremal fullerene graphs with the maximum clar number. Discrete Appl. Math. 157(14), 3152–3173 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Shahid Imran
    • 1
  • Muhammad Hussain
    • 1
  • Muhammad Kamran Siddiqui
    • 2
  • Muhammad Numan
    • 3
  1. 1.Department of MathematicsComsats Institute of Information TechnologyLahorePakistan
  2. 2.Department of MathematicsComsats Institute of Information TechnologySahiwalPakistan
  3. 3.Department of MathematicsComsats Institute of Information TechnologyAttockPakistan

Personalised recommendations