Advertisement

Journal of Mathematical Chemistry

, Volume 55, Issue 7, pp 1376–1391 | Cite as

On the geometric–arithmetic index by decompositions-CMMSE

  • Juan C. Hernández
  • José M. Rodríguez
  • José M. Sigarreta
Original Paper

Abstract

The concept of geometric–arithmetic index was introduced in the chemical graph theory recently, but it has shown to be useful. There are many papers studying different kinds of indices (as Wiener, hyper–Wiener, detour, hyper–detour, Szeged, edge–Szeged, PI, vertex–PI and eccentric connectivity indices) under particular cases of decompositions. The main aim of this paper is to show that the computation of the geometric-arithmetic index of a graph G is essentially reduced to the computation of the geometric-arithmetic indices of the so-called primary subgraphs obtained by a general decomposition of G. Furthermore, using these results, we obtain formulas for the geometric-arithmetic indices of bridge graphs and other classes of graphs, like bouquet of graphs and circle graphs. These results are applied to the computation of the geometric-arithmetic index of Spiro chain of hexagons, polyphenylenes and polyethene.

Keywords

Graph invariant Topological index Geometric–arithmetic index 

Mathematics Subject Classification

05C07 92E10 

References

  1. 1.
    R. Balakrishnan, N. Sridharan, K. Viswanathan Iyer, Wiener index of graphs with more than one cut-vertex. Appl. Math. Lett. 21, 922–927 (2008)CrossRefGoogle Scholar
  2. 2.
    S. Bermudo, J.M. Rodríguez, J.M. Sigarreta, J.-M. Vilaire, Gromov hyperbolic graphs. Discrete Math. 313, 1575–1585 (2013)CrossRefGoogle Scholar
  3. 3.
    G. Brinkmann, J. Koolen, V. Moulton, On the hyperbolicity of chordal graphs. Ann. Comb. 5, 61–69 (2001)CrossRefGoogle Scholar
  4. 4.
    K.C. Das, I. Gutman, B. Furtula, Survey on geometric-arithmetic indices of graphs. MATCH Commun. Math. Comput. Chem. 65, 595–644 (2011)Google Scholar
  5. 5.
    K.C. Das, I. Gutman, B. Furtula, On first geometric-arithmetic index of graphs. Discrete Appl. Math. 159, 2030–2037 (2011)CrossRefGoogle Scholar
  6. 6.
    E. Deutsch, S. Klavžar, Computing Hosoya polynomials of graphs from primary subgraphs. MATCH Commun. Math. Comput. Chem. 70, 627–644 (2013)Google Scholar
  7. 7.
    I. Gutman, B. Furtula (eds.), Recent Results in the Theory of Randić Index (Univ. Kragujevac, Kragujevac, 2008)Google Scholar
  8. 8.
    X. Li, I. Gutman, Mathematical Aspects of Randić Type Molecular Structure Descriptors (Univ. Kragujevac, Kragujevac, 2006)Google Scholar
  9. 9.
    T. Mansour, M. Schork, The PI index of bridge and chain graphs. MATCH Commun. Math. Comput. Chem. 61, 723–734 (2009)Google Scholar
  10. 10.
    T. Mansour, M. Schork, Wiener, hyper-Wiener, detour and hyper-detour indices of bridge and chain graphs. J. Math. Chem. 581, 59–69 (2009)Google Scholar
  11. 11.
    T. Mansour, M. Schork, The vertex PI index and Szeged index of bridge graphs. Discrete Appl. Math. 157, 1600–1606 (2009)CrossRefGoogle Scholar
  12. 12.
    J. Michel, J.M. Rodríguez, J.M. Sigarreta, V. Villeta, Hyperbolicity and parameters of graphs. Ars Comb. 100, 43–63 (2011)Google Scholar
  13. 13.
    M. Mogharrab, G.H. Fath-Tabar, Some bounds on \(GA_1\) index of graphs. MATCH Commun. Math. Comput. Chem. 65, 33–38 (2010)Google Scholar
  14. 14.
    O. Ore, Diameters in Graphs. J. Comb. Theory 5, 75–81 (1968)CrossRefGoogle Scholar
  15. 15.
    M. Randić, On characterization of molecular branching. J. Am. Chem. Soc. 97, 6609–6615 (1975)CrossRefGoogle Scholar
  16. 16.
    J.A. Rodríguez, J.M. Sigarreta, On the Randić index and condicional parameters of a graph. MATCH Commun. Math. Comput. Chem. 54, 403–416 (2005)Google Scholar
  17. 17.
    J.M. Rodríguez, J.M. Sigarreta, On the geometric-arithmetic index. MATCH Commun. Math. Comput. Chem. 74, 103–120 (2015)Google Scholar
  18. 18.
    J.M. Rodríguez, J.M. Sigarreta, Spectral properties of the geometric-arithmetic index. Appl. Math. Comput. 277, 142–153 (2016)Google Scholar
  19. 19.
    J.A. Rodríguez-Velázquez, C. García Gómez, G.A. Barragán-Ramírez, Computing the local metric dimension of a graph from the local metric dimension of primary subgraphs. Int. J. Comput. Math. 92(4), 686–693 (2015)CrossRefGoogle Scholar
  20. 20.
    R. Sharafdini, I. Gutman, Splice graphs and their topological indices. Kragujev. J. Sci. 35, 89–98 (2013)Google Scholar
  21. 21.
    J.M. Sigarreta, Bounds for the Geometric-Arithmetic index of a graph. Miskolc Math. Notes 16, 1199–1212 (2015)CrossRefGoogle Scholar
  22. 22.
    TRC Thermodynamic Tables, Hydrocarbons; Thermodynamic Research Center (The Texas A & M University System, College Station, TX, 1987)Google Scholar
  23. 23.
    M. Vöge, A.J. Guttmann, I. Jensen, On the number of benzenoid hydrocarbons. J. Chem. Inf. Comput. Sci. 42, 456–466 (2002)CrossRefGoogle Scholar
  24. 24.
    D. Vukičević, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges. J. Math. Chem. 46, 1369–1376 (2009)CrossRefGoogle Scholar
  25. 25.
    H. Wiener, Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69, 17–20 (1947)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Juan C. Hernández
    • 1
  • José M. Rodríguez
    • 2
  • José M. Sigarreta
    • 1
  1. 1.Facultad de MatemáticasUniversidad Autónoma de GuerreroAcalpulco GroMexico
  2. 2.Departamento de MatemáticasUniversidad Carlos III de MadridLeganés, MadridSpain

Personalised recommendations