Journal of Mathematical Chemistry

, Volume 55, Issue 7, pp 1370–1375 | Cite as

Coating of \(\hbox {C}_{60}\) by para-\(\hbox {H}_2\) and ortho-\(\hbox {D}_2\): revisiting the solvation shell—CMMSE

Original Paper
  • 148 Downloads

Abstract

The solvation of Buckminsterfullerene \(\hbox {C}_{60}\) by para-hydrogen and ortho-deuterium clusters has been modeled using a dedicated potential and path-integral molecular dynamics simulations at low temperature (2 K). The solvation shell obtained from the distribution of radial distances is found to be complete near 50 molecules, in agreement with recent mass spectrometry measurements. Deuteration increases the shell size by one, indicating a denser shell owing to less prominent vibrational delocalization for this heavier isotope.

Keywords

Hydrogen clusters Fullerenes Quantum solvation Path-integral molecular dynamics 

Notes

Acknowledgments

Financial support through a joint grant from CNRS/TUBITAK is gratefully acknowledged.

References

  1. 1.
    H. Furukawa, O.M. Yaghi, Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 131, 8875–8883 (2009)CrossRefGoogle Scholar
  2. 2.
    P. Jena, Materials for hydrogen storage: past, present, and future. J. Phys. Chem. Lett. 2, 206–211 (2011)CrossRefGoogle Scholar
  3. 3.
    N. Park, K. Choi, J. Hwang, D.W. Kim, D.O. Kim, J. Ihm, Progress on first-principles-based materials design for hydrogen storage. Proc. Natl. Acad. Sci. USA 109, 19893–19899 (2012)CrossRefGoogle Scholar
  4. 4.
    L.W. Bruch, M.W. Cole, E. Zaremba, Physical Adsorption (Dover, Mineola, 2007)Google Scholar
  5. 5.
    A. Kaiser, C. Leidlmair, P. Bartl, S. Zöttl, S. Denifl, A. Mauracher, M. Probst, P. Scheier, O. Echt, Adsorption of hydrogen on neutral and charged fullerene: experiment and theory. J. Chem. Phys. 138, 074311 (2013)CrossRefGoogle Scholar
  6. 6.
    J.D. Turnbull, M. Boninsegni, Adsorption of para-hydrogen on fullerenes. Phys. Rev. B 71, 205421 (2005)CrossRefGoogle Scholar
  7. 7.
    F. Mezzacapo, M. Boninsegni, On the possible “supersolid” character of parahydrogen clusters. J. Phys. Chem. A 115, 6831–6837 (2011)CrossRefGoogle Scholar
  8. 8.
    I.F. Silvera, V.V. Goldman, The isotropic intermolecular potential for H\(_{2}\) and D\(_{2}\) in the solid and gas phases. J. Chem. Phys. 69, 4209–4213 (1978)CrossRefGoogle Scholar
  9. 9.
    M.C. Gordillo, H\(_{2}\) on corrugated graphene: diffusion Monte Carlo calculations. Phys. Rev. B 88, 041406(R) (2013)CrossRefGoogle Scholar
  10. 10.
    F. Calvo, E. Yurtsever, Solvation of carbonaceous molecules by para-H\(_2\) and ortho-D\(_2\) clusters II. Polycyclic aromatic hydrocarbons. J. Chem. Phys. 145, 084304 (2016)Google Scholar
  11. 11.
    S. Grimme, Improved second-order Møller-Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies. J. Chem. Phys. 118, 9095–9102 (2003)CrossRefGoogle Scholar
  12. 12.
    H.-J. Werner, P.J. Knowles, G. Knizia, F.R. Manby, M. Schütz, P. Celani, W. Györffy, D. Kats, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K.R. Shamasundar, T.B. Adler, R.D. Amos, A. Bernhardsson, A. Berning, D.L. Cooper, M.J.O. Deegan, A.J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A.W. Lloyd, R.A. Mata, A.J. May, S.J. McNicholas, W. Meyer, M.E. Mura, A. Nicklaß, D.P. O’Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A.J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, MOLPRO (version 2012.1) is a package of ab initio programsGoogle Scholar
  13. 13.
    G. Stan, M.W. Cole, Hydrogen adsorption in nanotubes. J. Low Temp. Phys. 110, 539–544 (1998)CrossRefGoogle Scholar
  14. 14.
    D. Levesque, A. Gicquel, F.L. Darkrim, S.B. Kayiran, Monte Carlo simulations of hydrogen storage in carbon nanotubes. J. Phys. Condens. Matter 14, 9285–9293 (2002)CrossRefGoogle Scholar
  15. 15.
    T. Korona, A. Hesselmann, H. Dodziuk, Symmetry-adapted perturbation theory applied to endohedral fullerene complexes: a stability study of H\(_2\)@C\(_{60}\) and 2H\(_2\)@C\(_{60}\). J. Chem. Theory Comput. 5, 1585–1596 (2009)CrossRefGoogle Scholar
  16. 16.
    F. Calvo, J.P.K. Doye, D.J. Wales, Quantum partition functions from classical distributions: application to rare-gas clusters. J. Chem. Phys. 114, 7312–7329 (2001)CrossRefGoogle Scholar
  17. 17.
    P. Ramachandran, G. Varoquaux, Mayavi: a package for 3D visualization of scientific data. IEEE Comput. Sci. Eng. 13, 40–51 (2011)CrossRefGoogle Scholar
  18. 18.
    F. Calvo, Size-induced melting and reentrant freezing in fullerene-doped helium clusters. Phys. Rev. B 85, 060502(R) (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.LIPHY, CNRSUniv. Grenoble AlpesGrenobleFrance
  2. 2.Koç UniversitySariyer, IstanbulTurkey

Personalised recommendations