Journal of Mathematical Chemistry

, Volume 55, Issue 1, pp 153–174 | Cite as

A compact exponential method for the efficient numerical simulation of the dewetting process of viscous thin films

  • Jorge E. Macías-Díaz
  • Iliana E. Medina-Ramírez
  • Axel Chávez-Guzmán
Original Article


In this work, we propose a discrete mathematical system to model the evolution of the thickness of two-dimensional viscous thin films subject to a dewetting process. The continuous model under consideration is a degenerate partial differential equation that generalizes the classical thin film equation, and considers the inclusion of a singular potential. The analytical model is discretized using an exponential method that is capable of preserving the positive character of the approximations. In addition, the explicit nature of our approach results in an economic computer implementation which produces fast simulations. We provide some illustrative examples on the dynamics of the growth of thin films in the presence/absence of a dewetting process. The qualitative results exhibit the appearance of typical patterns obtained in experimental settings. The technique was validated against Bhattacharya’s method and a standard explicit discretization of the mathematical model.


Degenerate thin-film equation Compact exponential method Preservation of positivity Computationally efficient numerical technique 

Mathematics Subject Classification

92-08 65M06 92C37 35K55 



Beforehand, we want to thank the anonymous reviewers and the associate editor in charge of handling this manuscript, for all the invaluable suggestions and comments. Also, the authors would like to thank the Dean of the Faculty of Sciences of the Universidad Autónoma de Aguascalientes (UAA) for the partial financial funding of this work. The second author wishes to acknowledge the financial support of the National Council for Science and Technology of Mexico (CONACYT) through the Award No. 260373. Finally, we acknowledge the technical assistance of Dr. Diana E. García-Rodriguez, who was in charge of obtaining the atomic force microscopy images used in this work, and Mr. Axel Guzmán-Chávez, who coded a raw version of our method as part of an undergraduate research project at UAA.


  1. 1.
    I. Alolyan, T. Simos, Efficient low computational cost hybrid explicit four-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 53(8), 1808–1834 (2015)CrossRefGoogle Scholar
  2. 2.
    A.R. Bahadır, Exponential finite-difference method applied to Korteweg-de Vries equation for small times. Appl. Math. Comput. 160(3), 675–682 (2005)Google Scholar
  3. 3.
    J. Becker, G. Grün, R. Seemann, H. Mantz, K. Jacobs, K.R. Mecke, R. Blossey, Complex dewetting scenarios captured by thin-film models. Nat. Mater. 2(1), 59–63 (2003)CrossRefGoogle Scholar
  4. 4.
    F. Bernis, Viscous Flows, Fourth Order Nonlinear Degenerate Parabolic Equations and Singular Elliptic Problems. Pitman Research Notes in Mathematics Series, pp. 40–40 (1995)Google Scholar
  5. 5.
    F. Bernis, A. Friedman, Higher order nonlinear degenerate parabolic equations. J. Differ. Equ. 83(1), 179–206 (1990)CrossRefGoogle Scholar
  6. 6.
    F. Bernis, J. McLeod, Similarity solutions of a higher order nonlinear diffusion equation. Nonlinear Anal. Theory Methods Appl. 17(11), 1039–1068 (1991)CrossRefGoogle Scholar
  7. 7.
    A.L. Bertozzi, Symmetric singularity formation in lubrication-type equations for interface motion. SIAM J. Appl. Math. 56(3), 681–714 (1996)CrossRefGoogle Scholar
  8. 8.
    A.L. Bertozzi, M.P. Brenner, T.F. Dupont, L.P. Kadanoff, Singularities and similarities in interface flows, in Trends and Perspectives in Applied Mathematics, ed. by F. John, J.E. Marsden, L. Sirovich (Springer, New York, USA, 2004), pp. 155–208Google Scholar
  9. 9.
    M. Bertsch, R. Dal Passo, H. Garcke, G. Grün et al., The thin viscous flow equation in higher space dimensions. Adv. Differ. Equ. 3(3), 417–440 (1998)Google Scholar
  10. 10.
    M. Bhattacharya, An explicit conditionally stable finite difference equation for-heat conduction problems. Int. J. Numer. Methods Eng. 21(2), 239–265 (1985)CrossRefGoogle Scholar
  11. 11.
    M. Bhattacharya, A new improved finite difference equation for heat transfer during transient change. Appl. Math. Model. 10(1), 68–70 (1986)CrossRefGoogle Scholar
  12. 12.
    M. Bhattacharya, M. Davies, The comparative performance of some finite difference equations for transient heat conduction. Int. J. Numer. Methods Eng. 24(7), 1317–1331 (1987)CrossRefGoogle Scholar
  13. 13.
    G. Bruell, Modeling and analysis of a two-phase thin film model with insoluble surfactant. Nonlinear Anal. Real World Appl. 27, 124–145 (2016)CrossRefGoogle Scholar
  14. 14.
    M. Castro, F. Rodríguez, J. Cabrera, J. Martín, A compact difference scheme for numerical solutions of second order dual-phase-lagging models of microscale heat transfer. J. Comput. Appl. Math. 291, 432–440 (2016)CrossRefGoogle Scholar
  15. 15.
    Y. Chen, X. Cui, X. Yao, Peritectic melting of thin films, superheating and applications in growth of REBCO superconductors. Prog. Mater Sci. 68, 97–159 (2015)CrossRefGoogle Scholar
  16. 16.
    S.H. Davis et al., On the motion of a fluid-fluid interface along a solid surface. J. Fluid Mech. 65(01), 71–95 (1974)CrossRefGoogle Scholar
  17. 17.
    T. Fujimoto, R.R. Ranade, Two characterizations of inverse-positive matrices: the Hawkins–Simon condition and the Le Chatelier–Braun principle. Electron. J. Linear Algebra 27(1), 392 (2014)Google Scholar
  18. 18.
    R. Gatensby, N. McEvoy, K. Lee, T. Hallam, N.C. Berner, E. Rezvani, S. Winters, M. OBrien, G.S. Duesberg, Controlled synthesis of transition metal dichalcogenide thin films for electronic applications. Appl. Surf. Sci. 297, 139–146 (2014)CrossRefGoogle Scholar
  19. 19.
    L. Giacomelli, M.V. Gnann, H. Knüpfer, F. Otto, Well-posedness for the Navier-slip thin-film equation in the case of complete wetting. J. Differ. Equ. 257(1), 15–81 (2014)CrossRefGoogle Scholar
  20. 20.
    C.G. Granqvist, Preparation of thin films and nanostructured coatings for clean tech applications: a primer. Sol. Energy Mater. Sol. Cells 99, 166–175 (2012)CrossRefGoogle Scholar
  21. 21.
    R.F. Handschuh, T.G. Keith Jr., Applications of an exponential finite-difference technique. Numer. Heat Transf. 22(3), 363–378 (1992)CrossRefGoogle Scholar
  22. 22.
    B. Inan, A. Bahadır, An explicit exponential finite difference method for the Burgers equation. Eur. Int. J. Sci. Technol. 2, 61–72 (2013)Google Scholar
  23. 23.
    J.E. Macías-Díaz, A positive finite-difference model in the computational simulation of complex biological film models. J. Differ. Equ. Appl. 20(4), 548–569 (2014)CrossRefGoogle Scholar
  24. 24.
    J.E. Macías-Díaz, R.E. Landry, A. Puri, A finite-difference scheme in the computational modelling of a coupled substrate-biomass system. Int. J. Comput. Math. 91(10), 2199–2214 (2014)CrossRefGoogle Scholar
  25. 25.
    J. Martín-Vaquero, J. Vigo-Aguiar, Exponential fitting BDF algorithms: explicit and implicit 0-stable methods. J. Comput. Appl. Math. 192(1), 100–113 (2006)CrossRefGoogle Scholar
  26. 26.
    R.E. Mickens, Dynamic consistency: a fundamental principle for constructing nonstandard finite difference schemes for differential equations. J. Differ. Equ. Appl. 11(7), 645–653 (2005)CrossRefGoogle Scholar
  27. 27.
    M.D. Morales-Hernández, I.E. Medina-Ramírez, F.J. Avelar-González, J.E. Macías-Díaz, An efficient recursive algorithm in the computational simulation of the bounded growth of biological films. Int. J. Comput. Methods 9(04), 1250,050 (2012)CrossRefGoogle Scholar
  28. 28.
    K. Mu, T. Simos, A Runge–Kutta type implicit high algebraic order two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of coupled differential equations arising from the Schrödinger equation. J. Math. Chem. 53(5), 1239–1256 (2015)CrossRefGoogle Scholar
  29. 29.
    T.G. Myers, Thin films with high surface tension. Siam Rev. 40(3), 441–462 (1998)CrossRefGoogle Scholar
  30. 30.
    M. Nair, L. Guerrero, O.L. Arenas, P. Nair, Chemically deposited copper oxide thin films: structural, optical and electrical characteristics. Appl. Surf. Sci. 150(1), 143–151 (1999)CrossRefGoogle Scholar
  31. 31.
    M. Ohring, Materials Science of Thin Films: Deposition & Structure, 2nd edn. (Academic press, San Diego, 2002)Google Scholar
  32. 32.
    A. Ott, J. Klaus, J. Johnson, S. George, Al\(_3\)O\(_3\) thin film growth on Si (100) using binary reaction sequence chemistry. Thin Solid Films 292(1), 135–144 (1997)CrossRefGoogle Scholar
  33. 33.
    R.D. Passo, H. Garcke, G. Grün, On a fourth-order degenerate parabolic equation: global entropy estimates, existence, and qualitative behavior of solutions. SIAM J. Math. Anal. 29(2), 321–342 (1998)CrossRefGoogle Scholar
  34. 34.
    P. Pedrosa, D. Machado, P. Fiedler, B. Vasconcelos, E. Alves, N.P. Barradas, N. Martin, J. Haueisen, F. Vaz, C. Fonseca, Electrochemical characterization of nanostructured Ag: TiN thin films produced by glancing angle deposition on polyurethane substrates for bio-electrode applications. J. Electroanal. Chem. 768, 110–120 (2016)CrossRefGoogle Scholar
  35. 35.
    J. Peng, R. Xing, Y. Wu, B. Li, Y. Han, W. Knoll, D.H. Kim, Dewetting of thin polystyrene films under confinement. Langmuir 23(5), 2326–2329 (2007)CrossRefGoogle Scholar
  36. 36.
    R.J. Phillips, M.J. Shane, J.A. Switzer, Electrochemical and photoelectrochemical deposition of thallium (III) oxide thin films. J. Mater. Res. 4(04), 923–929 (1989)CrossRefGoogle Scholar
  37. 37.
    E. Rabkin, D. Amram, E. Alster, Solid state dewetting and stress relaxation in a thin single crystalline Ni film on sapphire. Acta Mater. 74, 30–38 (2014)CrossRefGoogle Scholar
  38. 38.
    J. Ruiz-Ramírez, J.E. Macías-Díaz, A skew symmetry-preserving computational technique for obtaining the positive and the bounded solutions of a time-delayed advection-diffusion-reaction equation. J. Comput. Appl. Math. 250, 256–269 (2013)CrossRefGoogle Scholar
  39. 39.
    R. Seemann, S. Herminghaus, K. Jacobs, Dewetting patterns and molecular forces: a reconciliation. Phys. Rev. Lett. 86(24), 5534 (2001)CrossRefGoogle Scholar
  40. 40.
    T. Simos, A new explicit four-step method with vanished phase-lag and its first and second derivatives. J. Math. Chem. 53(1), 402–429 (2015)CrossRefGoogle Scholar
  41. 41.
    T. Stange, D. Evans, W. Hendrickson, Nucleation and growth of defects leading to dewetting of thin polymer films. Langmuir 13(16), 4459–4465 (1997)CrossRefGoogle Scholar
  42. 42.
    C.Y. Tang, Y.N. Kwon, J.O. Leckie, Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: II. Membrane physiochemical properties and their dependence on polyamide and coating layers. Desalination 242(1), 168–182 (2009)CrossRefGoogle Scholar
  43. 43.
    J. Vigo-Aguiar, J.M. Ferrándiz, A general procedure for the adaptation of multistep algorithms to the integration of oscillatory problems. SIAM J. Numer. Anal. 35(4), 1684–1708 (1998)CrossRefGoogle Scholar
  44. 44.
    J. Vigo-Aguiar, T. Simos, Family of twelve steps exponential fitting symmetric multistep methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 32(3), 257–270 (2002)CrossRefGoogle Scholar
  45. 45.
    J. Vigo-Aguiar, T. Simos, Review of multistep methods for the numerical solution of the radial Schrödinger equation. Int. J. Quantum Chem. 103(3), 278–290 (2005)CrossRefGoogle Scholar
  46. 46.
    R. Xie, A. Karim, J. Douglas, C. Han, R. Weiss, Spinodal dewetting of thin polymer films. Phys. Rev. Lett. 81(6), 1251 (1998)CrossRefGoogle Scholar
  47. 47.
    Z. Zhou, T.E. Simos, A new two stage symmetric two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of the radial Schrödinger equation. J. Math. Chem. 54(2), 442–465 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jorge E. Macías-Díaz
    • 1
  • Iliana E. Medina-Ramírez
    • 2
  • Axel Chávez-Guzmán
    • 3
  1. 1.Departamento de Matemáticas y FísicaUniversidad Autónoma de AguascalientesAguascalientesMexico
  2. 2.Departamento de QuímicaUniversidad Autónoma de AguascalientesAguascalientesMexico
  3. 3.Centro de Ciencias BásicasUniversidad Autónoma de AguascalientesAguascalientesMexico

Personalised recommendations