Skip to main content
Log in

A compact exponential method for the efficient numerical simulation of the dewetting process of viscous thin films

  • Original Article
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this work, we propose a discrete mathematical system to model the evolution of the thickness of two-dimensional viscous thin films subject to a dewetting process. The continuous model under consideration is a degenerate partial differential equation that generalizes the classical thin film equation, and considers the inclusion of a singular potential. The analytical model is discretized using an exponential method that is capable of preserving the positive character of the approximations. In addition, the explicit nature of our approach results in an economic computer implementation which produces fast simulations. We provide some illustrative examples on the dynamics of the growth of thin films in the presence/absence of a dewetting process. The qualitative results exhibit the appearance of typical patterns obtained in experimental settings. The technique was validated against Bhattacharya’s method and a standard explicit discretization of the mathematical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. I. Alolyan, T. Simos, Efficient low computational cost hybrid explicit four-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 53(8), 1808–1834 (2015)

    Article  CAS  Google Scholar 

  2. A.R. Bahadır, Exponential finite-difference method applied to Korteweg-de Vries equation for small times. Appl. Math. Comput. 160(3), 675–682 (2005)

    Google Scholar 

  3. J. Becker, G. Grün, R. Seemann, H. Mantz, K. Jacobs, K.R. Mecke, R. Blossey, Complex dewetting scenarios captured by thin-film models. Nat. Mater. 2(1), 59–63 (2003)

    Article  CAS  Google Scholar 

  4. F. Bernis, Viscous Flows, Fourth Order Nonlinear Degenerate Parabolic Equations and Singular Elliptic Problems. Pitman Research Notes in Mathematics Series, pp. 40–40 (1995)

  5. F. Bernis, A. Friedman, Higher order nonlinear degenerate parabolic equations. J. Differ. Equ. 83(1), 179–206 (1990)

    Article  Google Scholar 

  6. F. Bernis, J. McLeod, Similarity solutions of a higher order nonlinear diffusion equation. Nonlinear Anal. Theory Methods Appl. 17(11), 1039–1068 (1991)

    Article  Google Scholar 

  7. A.L. Bertozzi, Symmetric singularity formation in lubrication-type equations for interface motion. SIAM J. Appl. Math. 56(3), 681–714 (1996)

    Article  Google Scholar 

  8. A.L. Bertozzi, M.P. Brenner, T.F. Dupont, L.P. Kadanoff, Singularities and similarities in interface flows, in Trends and Perspectives in Applied Mathematics, ed. by F. John, J.E. Marsden, L. Sirovich (Springer, New York, USA, 2004), pp. 155–208

  9. M. Bertsch, R. Dal Passo, H. Garcke, G. Grün et al., The thin viscous flow equation in higher space dimensions. Adv. Differ. Equ. 3(3), 417–440 (1998)

    Google Scholar 

  10. M. Bhattacharya, An explicit conditionally stable finite difference equation for-heat conduction problems. Int. J. Numer. Methods Eng. 21(2), 239–265 (1985)

    Article  Google Scholar 

  11. M. Bhattacharya, A new improved finite difference equation for heat transfer during transient change. Appl. Math. Model. 10(1), 68–70 (1986)

    Article  Google Scholar 

  12. M. Bhattacharya, M. Davies, The comparative performance of some finite difference equations for transient heat conduction. Int. J. Numer. Methods Eng. 24(7), 1317–1331 (1987)

    Article  Google Scholar 

  13. G. Bruell, Modeling and analysis of a two-phase thin film model with insoluble surfactant. Nonlinear Anal. Real World Appl. 27, 124–145 (2016)

    Article  Google Scholar 

  14. M. Castro, F. Rodríguez, J. Cabrera, J. Martín, A compact difference scheme for numerical solutions of second order dual-phase-lagging models of microscale heat transfer. J. Comput. Appl. Math. 291, 432–440 (2016)

    Article  Google Scholar 

  15. Y. Chen, X. Cui, X. Yao, Peritectic melting of thin films, superheating and applications in growth of REBCO superconductors. Prog. Mater Sci. 68, 97–159 (2015)

    Article  CAS  Google Scholar 

  16. S.H. Davis et al., On the motion of a fluid-fluid interface along a solid surface. J. Fluid Mech. 65(01), 71–95 (1974)

    Article  Google Scholar 

  17. T. Fujimoto, R.R. Ranade, Two characterizations of inverse-positive matrices: the Hawkins–Simon condition and the Le Chatelier–Braun principle. Electron. J. Linear Algebra 27(1), 392 (2014)

    Google Scholar 

  18. R. Gatensby, N. McEvoy, K. Lee, T. Hallam, N.C. Berner, E. Rezvani, S. Winters, M. OBrien, G.S. Duesberg, Controlled synthesis of transition metal dichalcogenide thin films for electronic applications. Appl. Surf. Sci. 297, 139–146 (2014)

    Article  CAS  Google Scholar 

  19. L. Giacomelli, M.V. Gnann, H. Knüpfer, F. Otto, Well-posedness for the Navier-slip thin-film equation in the case of complete wetting. J. Differ. Equ. 257(1), 15–81 (2014)

    Article  Google Scholar 

  20. C.G. Granqvist, Preparation of thin films and nanostructured coatings for clean tech applications: a primer. Sol. Energy Mater. Sol. Cells 99, 166–175 (2012)

    Article  CAS  Google Scholar 

  21. R.F. Handschuh, T.G. Keith Jr., Applications of an exponential finite-difference technique. Numer. Heat Transf. 22(3), 363–378 (1992)

    Article  Google Scholar 

  22. B. Inan, A. Bahadır, An explicit exponential finite difference method for the Burgers equation. Eur. Int. J. Sci. Technol. 2, 61–72 (2013)

    Google Scholar 

  23. J.E. Macías-Díaz, A positive finite-difference model in the computational simulation of complex biological film models. J. Differ. Equ. Appl. 20(4), 548–569 (2014)

    Article  Google Scholar 

  24. J.E. Macías-Díaz, R.E. Landry, A. Puri, A finite-difference scheme in the computational modelling of a coupled substrate-biomass system. Int. J. Comput. Math. 91(10), 2199–2214 (2014)

    Article  Google Scholar 

  25. J. Martín-Vaquero, J. Vigo-Aguiar, Exponential fitting BDF algorithms: explicit and implicit 0-stable methods. J. Comput. Appl. Math. 192(1), 100–113 (2006)

    Article  Google Scholar 

  26. R.E. Mickens, Dynamic consistency: a fundamental principle for constructing nonstandard finite difference schemes for differential equations. J. Differ. Equ. Appl. 11(7), 645–653 (2005)

    Article  Google Scholar 

  27. M.D. Morales-Hernández, I.E. Medina-Ramírez, F.J. Avelar-González, J.E. Macías-Díaz, An efficient recursive algorithm in the computational simulation of the bounded growth of biological films. Int. J. Comput. Methods 9(04), 1250,050 (2012)

    Article  Google Scholar 

  28. K. Mu, T. Simos, A Runge–Kutta type implicit high algebraic order two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of coupled differential equations arising from the Schrödinger equation. J. Math. Chem. 53(5), 1239–1256 (2015)

    Article  CAS  Google Scholar 

  29. T.G. Myers, Thin films with high surface tension. Siam Rev. 40(3), 441–462 (1998)

    Article  Google Scholar 

  30. M. Nair, L. Guerrero, O.L. Arenas, P. Nair, Chemically deposited copper oxide thin films: structural, optical and electrical characteristics. Appl. Surf. Sci. 150(1), 143–151 (1999)

    Article  CAS  Google Scholar 

  31. M. Ohring, Materials Science of Thin Films: Deposition & Structure, 2nd edn. (Academic press, San Diego, 2002)

    Google Scholar 

  32. A. Ott, J. Klaus, J. Johnson, S. George, Al\(_3\)O\(_3\) thin film growth on Si (100) using binary reaction sequence chemistry. Thin Solid Films 292(1), 135–144 (1997)

    Article  CAS  Google Scholar 

  33. R.D. Passo, H. Garcke, G. Grün, On a fourth-order degenerate parabolic equation: global entropy estimates, existence, and qualitative behavior of solutions. SIAM J. Math. Anal. 29(2), 321–342 (1998)

    Article  Google Scholar 

  34. P. Pedrosa, D. Machado, P. Fiedler, B. Vasconcelos, E. Alves, N.P. Barradas, N. Martin, J. Haueisen, F. Vaz, C. Fonseca, Electrochemical characterization of nanostructured Ag: TiN thin films produced by glancing angle deposition on polyurethane substrates for bio-electrode applications. J. Electroanal. Chem. 768, 110–120 (2016)

    Article  CAS  Google Scholar 

  35. J. Peng, R. Xing, Y. Wu, B. Li, Y. Han, W. Knoll, D.H. Kim, Dewetting of thin polystyrene films under confinement. Langmuir 23(5), 2326–2329 (2007)

    Article  CAS  Google Scholar 

  36. R.J. Phillips, M.J. Shane, J.A. Switzer, Electrochemical and photoelectrochemical deposition of thallium (III) oxide thin films. J. Mater. Res. 4(04), 923–929 (1989)

    Article  CAS  Google Scholar 

  37. E. Rabkin, D. Amram, E. Alster, Solid state dewetting and stress relaxation in a thin single crystalline Ni film on sapphire. Acta Mater. 74, 30–38 (2014)

    Article  CAS  Google Scholar 

  38. J. Ruiz-Ramírez, J.E. Macías-Díaz, A skew symmetry-preserving computational technique for obtaining the positive and the bounded solutions of a time-delayed advection-diffusion-reaction equation. J. Comput. Appl. Math. 250, 256–269 (2013)

    Article  Google Scholar 

  39. R. Seemann, S. Herminghaus, K. Jacobs, Dewetting patterns and molecular forces: a reconciliation. Phys. Rev. Lett. 86(24), 5534 (2001)

    Article  CAS  Google Scholar 

  40. T. Simos, A new explicit four-step method with vanished phase-lag and its first and second derivatives. J. Math. Chem. 53(1), 402–429 (2015)

    Article  CAS  Google Scholar 

  41. T. Stange, D. Evans, W. Hendrickson, Nucleation and growth of defects leading to dewetting of thin polymer films. Langmuir 13(16), 4459–4465 (1997)

    Article  CAS  Google Scholar 

  42. C.Y. Tang, Y.N. Kwon, J.O. Leckie, Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: II. Membrane physiochemical properties and their dependence on polyamide and coating layers. Desalination 242(1), 168–182 (2009)

    Article  CAS  Google Scholar 

  43. J. Vigo-Aguiar, J.M. Ferrándiz, A general procedure for the adaptation of multistep algorithms to the integration of oscillatory problems. SIAM J. Numer. Anal. 35(4), 1684–1708 (1998)

    Article  Google Scholar 

  44. J. Vigo-Aguiar, T. Simos, Family of twelve steps exponential fitting symmetric multistep methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 32(3), 257–270 (2002)

    Article  CAS  Google Scholar 

  45. J. Vigo-Aguiar, T. Simos, Review of multistep methods for the numerical solution of the radial Schrödinger equation. Int. J. Quantum Chem. 103(3), 278–290 (2005)

    Article  CAS  Google Scholar 

  46. R. Xie, A. Karim, J. Douglas, C. Han, R. Weiss, Spinodal dewetting of thin polymer films. Phys. Rev. Lett. 81(6), 1251 (1998)

    Article  CAS  Google Scholar 

  47. Z. Zhou, T.E. Simos, A new two stage symmetric two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of the radial Schrödinger equation. J. Math. Chem. 54(2), 442–465 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Beforehand, we want to thank the anonymous reviewers and the associate editor in charge of handling this manuscript, for all the invaluable suggestions and comments. Also, the authors would like to thank the Dean of the Faculty of Sciences of the Universidad Autónoma de Aguascalientes (UAA) for the partial financial funding of this work. The second author wishes to acknowledge the financial support of the National Council for Science and Technology of Mexico (CONACYT) through the Award No. 260373. Finally, we acknowledge the technical assistance of Dr. Diana E. García-Rodriguez, who was in charge of obtaining the atomic force microscopy images used in this work, and Mr. Axel Guzmán-Chávez, who coded a raw version of our method as part of an undergraduate research project at UAA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge E. Macías-Díaz.

Appendix: Matlab implementation

Appendix: Matlab implementation

In this appendix, we provide a Matlab code to produce simulations of the growth of inviscid \((\lambda = 0)\) thin films under a dewetting process. It is worth noting that its implementation is straightforward, and it requires input and output constants, which refer to the computational and model parameters described in the manuscript:

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macías-Díaz, J.E., Medina-Ramírez, I.E. & Chávez-Guzmán, A. A compact exponential method for the efficient numerical simulation of the dewetting process of viscous thin films. J Math Chem 55, 153–174 (2017). https://doi.org/10.1007/s10910-016-0677-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-016-0677-9

Keywords

Mathematics Subject Classification

Navigation