Advertisement

Journal of Mathematical Chemistry

, Volume 54, Issue 4, pp 866–917 | Cite as

Dynamics of a chlorophyll dimer in collective and local thermal environments

  • M. Merkli
  • G. P. Berman
  • R. T. Sayre
  • S. Gnanakaran
  • M. Könenberg
  • A. I. Nesterov
  • H. Song
Original Paper

Abstract

We present a theoretical analysis of exciton transfer and decoherence effects in a photosynthetic dimer interacting with collective (correlated) and local (uncorrelated) protein-solvent environments. Our approach is based on the framework of the spin-boson model. We derive explicitly the thermal relaxation and decoherence rates of the exciton transfer process, valid for arbitrary temperatures and for arbitrary (in particular, large) interaction constants between the dimer and the environments. We establish a generalization of the Marcus formula, giving reaction rates for dimer levels possibly individually and asymmetrically coupled to environments. We identify rigorously parameter regimes for the validity of the generalized Marcus formula. The existence of long living quantum coherences at ambient temperatures emerges naturally from our approach.

Keywords

Light-harvesting photosynthetic complex Photosynthetic dimer Exciton transfer Transfer rate Relaxation rate Decoherence rate Marcus formula Local environment Collective environment Strong environment coupling Open quantum systems Dynamical quantum resonance theory 

Notes

Acknowledgments

This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. M.M. and H.S. have been supported by NSERC through a Discovery Grant and a Discovery Accelerator Supplement. M.M. is grateful for the hospitality and financial support of LANL, where part of this work was carried out. A.I.N. acknowledges support from the CONACyT, Grant No. 15349 and partial support during his visit from the Biology Division, B-11, at LANL. G.P.B, S.G., and R.T.S. acknowledge support from the LDRD program at LANL.

References

  1. 1.
    M. Aghtar, J. Strümpfer, C. Olbrich, K. Schulten, U. Kleinekathöfer, Different types of vibrations interacting with electronic excitations in phycoerythrin 545 and Fenna–Matthews–Olson antenna systems. J. Phys. Chem. Lett. 5, 3131–3137 (2014)CrossRefGoogle Scholar
  2. 2.
    H. Araki, E. Woods, Representations of the canonical commutation relations describing a nonrelativistic infinite free bose gas. J. Math. Phys. 4, 637–662 (1963)CrossRefGoogle Scholar
  3. 3.
    G.P. Berman, A.I. Nesterov, S. Gurvitz, R.T. Sayre, Possible role of interference and sink effects in nonphotochemical quenching in photosynthetic complexes. arXiv:1412.3499v1 [physics.bio-ph]
  4. 4.
    O. Bratteli, D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics II (Springer, Berlin, 1987)CrossRefGoogle Scholar
  5. 5.
    H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2006)Google Scholar
  6. 6.
    A.W. Chin, J. Prior, R. Rosenbach, F. Caycedo-Soler, S.F. Huelga, M.B. Plenio, The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment-protein complexes. Nat. Phys. 9, 113–118 (2013)Google Scholar
  7. 7.
    A.W. Chin, A. Rivas, S.F. Huelga, M.B. Plenio, Exact mapping between system-reservoir quantum models and semi-infinite discrete chains using orthogonal polynomials. J. Math. Phys. 51, 092109 (2010)Google Scholar
  8. 8.
    T.G. Dewey, J.G. Bann, Protein dynamics and 1/f noise. Biophys. J. 63, 594–598 (1992)CrossRefGoogle Scholar
  9. 9.
    J. Du, T. Teramoto, K. Nakata, E. Tokunaga, T. Kobayashi, Real-time vibrational dynamics in chlorophyll a studied with a few-cycle pulse laser. Biophys. J. 101, 995–1003 (2011)CrossRefGoogle Scholar
  10. 10.
    D.D. Eads, E.W. Castner Jr, R.S. Alberte, L. Mets, G.R. Fleming, Direct observation of energy transfer in a photosynthetic membrane: chlorophyll b to chlorophyll a transfer in LHC. J. Phys. Chem. 93, 8271–8275 (1989)CrossRefGoogle Scholar
  11. 11.
    V. Jaksic, C.-A. Pillet, On a model for quantum friction II. Fermi’s golden rule and dynamics at positive temperature. Commun. Math. Phys. 176, 619–644 (1996)CrossRefGoogle Scholar
  12. 12.
    R.S. Knox, Förster’s resonance excitation transfer theory: not just a formula. J. Biomed. Opt. 17, 011003–011006 (2012)CrossRefGoogle Scholar
  13. 13.
    M. Könenberg, M. Merkli, On the irreversible dynamics emerging from quantum resonances. Preprint archive: arXiv:1503.02972v2 (submitted 2015)
  14. 14.
    M. Könenberg, M. Merkli, H. Song, Ergodicity of the spin-boson model for arbitrary coupling strength. Commun. Math. Phys. 336, 261–285 (2014)CrossRefGoogle Scholar
  15. 15.
    A.J. Leggett, S. Chakravarty, A.T. Dorsey, M.P.A. Fisher, A. Garg, W. Zwerger, Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59(1), 1–85 (1987)CrossRefGoogle Scholar
  16. 16.
    R.A. Marcus, On the theory of oxidation-reduction reactions involving electron transfer. I. J. Chem. Phys. 24(5), 966–978 (1956)CrossRefGoogle Scholar
  17. 17.
  18. 18.
    M. Merkli, G.P. Berman, R. Sayre, Electron transfer reactions: generalized spin-boson approach. J. Math. Chem. 51(3), 890–913 (2013)CrossRefGoogle Scholar
  19. 19.
    M. Merkli, G.P. Berman, A. Redondo, Application of resonance perturbation theory to dynamics of magnetization in spin systems interacting with local and collective bosonic reservoirs. J. Phys. A Math. Theor. 44, 305306–305330 (2011)CrossRefGoogle Scholar
  20. 20.
    M. Merkli, G.P. Berman, H. Song, Multiscale dynamics of open three-level quantum systems with two quasi-degenerate levels. J. Phys. A Math. Theor. 48, 275304 (2015)CrossRefGoogle Scholar
  21. 21.
    M. Merkli, I.M. Sigal, G.P. Berman, Resonance theory of decoherence and thermalization. Ann. Phys. 323, 373–412 (2008)CrossRefGoogle Scholar
  22. 22.
    M. Merkli, H. Song, Overlapping resonances in open quantum systems. Ann. Henri Poincaré 16(6), 1397–1427 (2015)CrossRefGoogle Scholar
  23. 23.
    M. Mohseni, Y. Omar, G.S. Engel, M.B. Plenio (eds.), Quantum Effects in Biology (Cambridge University Press, Cambridge, 2014)Google Scholar
  24. 24.
    F. Müh, D. Lindorfer, M.S. am Busch, T. Renger, Towards a structure-based exciton Hamiltonian for the CP29 antenna of photosystem II. Phys. Chem. Chem. Phys. 16, 11848–11863 (2014)CrossRefGoogle Scholar
  25. 25.
    S. Mukamel, Principles of Nonlinear Spectroscopy. Oxford Series in Optical and Imaging Sciences (Oxford University Press, Oxford, 1995)Google Scholar
  26. 26.
    A.I. Nesterov, G.P. Berman, The role of protein fluctuation correlations in electron transfer in photosynthetic complexes. Phys. Rev. E 91, 042702–042708 (2015)CrossRefGoogle Scholar
  27. 27.
    C. Olbrich, J. Strümpfer, K. Schulten, U. Kleinekathöfer, Theory and simulation of the environmental effects on FMO electronic transitions. J. Phys. Chem. Lett. 2, 1771–1776 (2011)CrossRefGoogle Scholar
  28. 28.
    F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark (eds.), NIST Handbook of Mathematical Functions (Cambridge University Press, Cambridge, 2010)Google Scholar
  29. 29.
    G.M. Palma, K.-A. Suominen, A.K. Ekert, Quantum computers and dissipation. Proc. R. Soc. Lond. A 452, 567–584 (1996)CrossRefGoogle Scholar
  30. 30.
    J. Prior, A.W. Chin, S.F. Huelga, M.B. Plenio, Efficient simulation of strong system-environment interactions. Phys. Rev. Lett. 105, 050404 (2010)Google Scholar
  31. 31.
    P. Rebentrost, M. Mohseni, I. Kassal, S. Lloyd, A. Aspuru-Guzik, Environment assisted quantum transport. New J. Phys. 11, 033003–12 (2009)Google Scholar
  32. 32.
    R. Rosenbach, J. Cerrillo, S.F. Huelga, J.S. Cao, M.B. Plenio, Efficient simulation of non-Markovian system-environment interaction. E-print: arXiv:1510.03100
  33. 33.
    A. Shabani, M. Mohseni, H. Rabitz, S. Lloyd, Numerical evidence for robustness of environment-assisted quantum transport. Phys. Rev. E 89, 042706–7 (2014)CrossRefGoogle Scholar
  34. 34.
    Y. Tanimura, R. Kubo, Time evolution of a quantum system in contact with a nearly Gaussian–Markoffian noise bath. J. Phys. Soc. Jpn. 58, 101–114 (1989)CrossRefGoogle Scholar
  35. 35.
    Y. Tanimura, Reduced hierarchical equations of motion in real and imaginary time: correlated initial states and thermodynamic quantities. J. Chem. Phys. 141, 044113–044114 (2014)CrossRefGoogle Scholar
  36. 36.
    C.P. van der Vegte, J.D. Prajapati, U. Kleinekathöfer, J. Knoester, T.L.C. Jansen, Atomistic modeling of two-dimensional electronic spectra and excited-state dynamics for a light harvesting 2 complex. J. Phys. Chem. B 119, 1302–1313 (2015)CrossRefGoogle Scholar
  37. 37.
    R. Wang, S. Parameswaran, G. Hastings, Density functional theory based calculations of the vibrational properties of chlorophyll-a. Vib. Spectrosc. 44, 357–368 (2007)CrossRefGoogle Scholar
  38. 38.
    D. Xu, K. Schulten, Coupling of protein motion to electron transfer in a photosynthetic reaction center: investigating the low temperature behavior in the framework of the spin-boson model. Chem. Phys. 182, 91–117 (1994)CrossRefGoogle Scholar
  39. 39.
    W. Zhuang, T. Hayashi, S. Mukamel, Coherent multidimensional vibrational spectroscopy of biomolecules: concepts, simulations, and challenges. Angew. Chem. Int. Ed. 48, 3750–3781 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • M. Merkli
    • 1
  • G. P. Berman
    • 2
  • R. T. Sayre
    • 3
  • S. Gnanakaran
    • 4
  • M. Könenberg
    • 1
    • 5
  • A. I. Nesterov
    • 6
  • H. Song
    • 7
  1. 1.Department of Mathematics and StatisticsMemorial University of NewfoundlandSt. John’sCanada
  2. 2.Theoretical DivisionLos Alamos National Laboratory, and the New Mexico ConsortiumLos AlamosUSA
  3. 3.Biological Division, B-11Los Alamos National Laboratory and the New Mexico ConsortiumLos AlamosUSA
  4. 4.Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA
  5. 5.Fachbereich MathematikUniversität StuttgartStuttgartGermany
  6. 6.Departamento de FisicaCUCEI, Universidad de GuadalajaraGuadalajaraMexico
  7. 7.Tianjin University of TechnologyTianjinChina

Personalised recommendations