Skip to main content
Log in

Surface tension and Laplace pressure in triangulated surface models for membranes without fixed boundary

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

A Monte Carlo (MC) study is performed to evaluate the surface tension \(\gamma \) of spherical membranes that may be regarded as the models of the lipid layers. We use the canonical surface model defined on the self-avoiding triangulated lattices. The surface tension \(\gamma \) is calculated by keeping the total surface area A constant during the MC simulations. In the evaluation of \(\gamma \), we use A instead of the projected area \(A_p\), which is unknown due to the fluctuation of the spherical surface without boundary. The pressure difference \({\varDelta }p \) between the inner and the outer sides of the surface is also calculated by maintaining the enclosed volume constant. Using \({\varDelta }p \) and the Laplace formula, we obtain the tension, which is considered to be equal to the frame tension \(\tau \) conjugate to \(A_p\), and check whether or not \(\gamma \) is consistent with \(\tau \). We find reasonable consistency between \(\gamma \) and \(\tau \) in the region of sufficiently large bending rigidity \(\kappa \) or sufficiently large A / N. It is also found that \(\tau \) becomes constant in the limit of \(A{/}N\rightarrow \infty \) both in the tethered and fluid surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H.L. Scott, Lipid–cholesterol interactions: Monte Carlo simulations and theory. Biophys. J. 59, 445–455 (1991)

    Article  CAS  Google Scholar 

  2. R.W. Pastor, Molecular dynamics and Monte Carlo simulations of lipid bilayers. Curr. Opin. Struct. Biol. 4, 486–492 (1994)

    Article  CAS  Google Scholar 

  3. K.M. Merz, Molecular dynamics simulations of lipid bilayers. Curr. Opin. Struct. Biol. 7, 511–517 (1997)

    Article  CAS  Google Scholar 

  4. D.J. Tobias, K. Tu, M.L. Klein, Atomic scale molecular dynamics simulations of lipid membranes. Curr. Opin. Struct. Biol. 2, 15–26 (1997)

    CAS  Google Scholar 

  5. J.F. Nagle, S. Tristram-Nagle, Structure of lipid bilayers. Curr. Opin. Struct. Biol. 10, 474–480 (2000)

    Article  CAS  Google Scholar 

  6. R.M. Venable, B.R. Brooks, R.W. Pastor, Molecular dynamics simulations of gel phase lipid bilayers in constant pressure and constant surface area ensembles. J. Chem. Phys. 112, 4822–4832 (2000)

    Article  CAS  Google Scholar 

  7. S.-W. Chiu, M.M. Clark, S. Subramaniam, H.L. Scott, E. Jakobsson, Incorporation of surface tension into molecular dynamics simulations of an interface: a fluid phase lipid bilayer membrane. Biophys. J. 69, 1230–1245 (1995)

    Article  CAS  Google Scholar 

  8. S.-W. Chiu, M. Clark, E. Jakobsson, S. Subramaniam, H.L. Scott, Application of a combined Monte Carlo and molecular dynamics method to the simulation of a dipalmitoyl phosphatidylcholine lipid bilayer. J. Comput. Chem. 20, 1153–1164 (1999)

    Article  CAS  Google Scholar 

  9. S.E. Feller, R.W. Pastor, On simulating lipid bilayers with an applied surface tension: periodic boundary conditions and undulations. Biophys. J. 71, 1350–1355 (1996)

    Article  CAS  Google Scholar 

  10. E. Lindahl, O. Edholm, Spatial and energetic-entropic decomposition of surface tension in lipid bilayers from molecular dynamics simulations. J. Chem. Phys. 113, 3882–3893 (2000)

    Article  CAS  Google Scholar 

  11. S.J. Marrink, A.E. Mark, Effect of undulations on surface tension in simulated bilayers. J. Phys. Chem. B 105, 6122–6127 (2001)

    Article  CAS  Google Scholar 

  12. E. Lindahl, O. Edholm, Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. Biophys. J. 79, 426–433 (2000)

    Article  CAS  Google Scholar 

  13. W. Cai, T.C. Lubensky, P. Nelson, T. Powers, Measure factors, tension, and correlations of fluid membranes. J. Phys. II Fr. 4, 931 (1994)

    CAS  Google Scholar 

  14. J. Ambjörn, B. Durhuus, T. Jonsson, Scaling of the string tension in a new class of regularized string theories. Phys. Rev. Lett. 58, 2619–2622 (1987)

    Article  Google Scholar 

  15. J. Ambjörn, A. Irbäck, J. Jurkiewicz, B. Petersson, The theory of dynamical random surfaces with extrinsic curvature. Nucl. Phys. B 393(3), 571–600 (1993)

    Article  Google Scholar 

  16. J.F. Wheater, Random surfaces: from polymer membranes to strings. J. Phys. A Math. Gen. 27, 3323–3353 (1994)

    Article  CAS  Google Scholar 

  17. H.-G. Döbereiner, G. Gompper, C.K. Haluska, D.M. Kroll, P.G. Petrov, K.A. Riske, Advanced flicker spectroscopy of fluid membranes. Phys. Rev. Lett. 91, 048301(1–4) (2003)

    Article  Google Scholar 

  18. J.-B. Fournier, C. Barbetta, Direct calculation from the stress tensor of the lateral surface tension of fluctuating fluid membranes. Phys. Rev. Lett. 100, 078103(1–4) (2008)

    Article  Google Scholar 

  19. A. Imparato, Surface tension in bilayer membranes with fixed projected area. J. Chem. Phys. 124, 154714(1–9) (2006)

    Article  Google Scholar 

  20. J. Pécréaux, H.-G. Döbereiner, J. Prost, J.-F. Joanny, P. Bassereau, Refined contour analysis of giant unilamellar vesicles. Euro. Phys. J. E 13, 277–290 (2004)

    Article  Google Scholar 

  21. W. Helfrich, Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch 28c, 693–703 (1973)

    Google Scholar 

  22. A.M. Polyakov, Fine structure of strings. Nucl. Phys. B 268, 406–412 (1986)

    Article  Google Scholar 

  23. D. Nelson, The statistical mechanics of membranes and interfaces, in Statistical Mechanics of Membranes and Surfaces, 2nd edn., ed. by D. Nelson, T. Piran, S. Weinberg (World Scientific, Singapore, 2004), pp. 1–17

    Chapter  Google Scholar 

  24. F. David, S. Leibler, Vanishing tension of fluctuating membranes. J. Phys. II Fr. 1, 959–976 (1991)

    CAS  Google Scholar 

  25. R.A. Foty, G. Forgacs, C.M. Pfleger, M.S. Steinberg, Liquid properties of embryonic tissues: measurement of interfacial tensions. Phys. Rev. Lett. 72, 2298–2301 (1994)

    Article  Google Scholar 

  26. R.A. Foty, C.M. Pfleger, G. Forgacs, M.S. Steinberg, Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development 122, 1611–1620 (1996)

    CAS  Google Scholar 

  27. H. Koibuchi, A. Shobukhov, Surface tension, pressure difference and Laplace formula for membranes. In Proceedings of International Conference on Mathematical Modeling in Physical Sciences 2014, Journal of Physics: Conference Series, vol. 574 (IOP Publishing, Madrid Spain, 2015) p. 012101(1–5)

  28. M. Doi, F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1986)

    Google Scholar 

  29. M. Bowick, A. Cacciuto, G. Thorleifsson, A. Travesset, Universality classes of self-avoiding fixed connectivity membranes. Euro. Phys. J. E 5, 149–160 (2001)

    Article  CAS  Google Scholar 

  30. G. Gompper, D.M. Kroll, Phase diagram and scaling behavior of fluid vesicles. Phys. Rev. E 51, 514–525 (1995)

    Article  CAS  Google Scholar 

  31. F. David, A model of random surfaces with non-trivial critical behavior. Nucl. Phys. B 257(FS14), 543–576 (1985)

    Article  Google Scholar 

  32. H. Koibuchi, A. Shobukhov, Branched-polymer to inflated transition of self-avoiding fluid surfaces. Phys. A 410, 54–65 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the Grant-in-Aid for Scientific Research (C) Number 26390138. We acknowledge the support of the Promotion of Joint Research 2014, Toyohashi University of Technology. We are grateful to K. Osari and S. Usui for the computer analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Koibuchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koibuchi, H., Shobukhov, A. & Sekino, H. Surface tension and Laplace pressure in triangulated surface models for membranes without fixed boundary. J Math Chem 54, 358–374 (2016). https://doi.org/10.1007/s10910-015-0564-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-015-0564-9

Keywords

Navigation