Skip to main content
Log in

A Haar wavelet-finite difference hybrid method for the numerical solution of the modified Burgers’ equation

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we investigate the numerical solutions of one dimensional modified Burgers’ equation with the help of Haar wavelet method. In the solution process, the time derivative is discretized by finite difference, the nonlinear term is linearized by a linearization technique and the spatial discretization is made by Haar wavelets. The proposed method has been tested by three test problems. The obtained numerical results are compared with the exact ones and those already exist in the literature. Also, the calculated numerical solutions are drawn graphically. Computer simulations show that the presented method is computationally cheap, fast, reliable and quite good even in the case of small number of grid points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Bateman, Some recent researches on the motion of fluids. Mon. Weather Rev. 43, 163–170 (1915)

    Article  Google Scholar 

  2. J.M. Burgers, A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171–199 (1948)

    Article  Google Scholar 

  3. E. Hopf, The partial differential equation \(u_{t}+uu_{x}=\mu u_{xx}\). Comm. Pure Appl. Math. 3, 201–230 (1950)

    Article  Google Scholar 

  4. J.D. Cole, On a quasilinear parabolic equation occurring in aerodynamics. Quart. Appl. Math. 9, 225–236 (1951)

    Google Scholar 

  5. E.L. Miller, Predictor–corrector studies of Burgers’ model of turbulent flow, M.S. Thesis, (University of Delaware, Newark, DE, 1966)

  6. R.C. Mittal, P. Singhal, Numerical solution of Burgers’ equation. Commun. Numer. Methods Eng. 9, 397–406 (1993)

    Article  Google Scholar 

  7. S. Kutluay, A. Esen, I. Dag, Numerical solutions of the Burgers’ equation by the least-squares quadratic B-spline finite element method. J. Comput. Appl. Math. 167, 21–33 (2004)

    Article  Google Scholar 

  8. S. Kutluay, A. Esen, A lumped Galerkin method for solving the Burgers’ equation. Int. J. Comput. Math. 81(11), 1433–1444 (2004)

    Article  Google Scholar 

  9. O.V. Vasilyev, S. Paolucci, A dynamically adaptive multilevel wavelet collocation method for solving partial differential equations in a finite domain. J. Comput. Phys. 125, 498–512 (1996)

    Article  Google Scholar 

  10. M.A. Ramadan, T.S. El-Danaf, Numerical treatment for the modified Burgers’ equation. Math. Comput. Simul. 70, 90–98 (2005)

    Article  Google Scholar 

  11. M.A. Ramadan, T.S. El-Danaf, F.E.I. Abd Alaal, A numerical solution of the Burgers’ equation using septic B-splines. Chaos Soliton Fract. 26, 795–804 (2005)

    Article  Google Scholar 

  12. B. Saka, I. Dag, A numerical study of the Burgers’ equation. J. Frankl. Inst. 345, 328–348 (2008)

    Article  Google Scholar 

  13. T. Roshan, K.S. Bhamra, Numerical solutions of the modified Burgers’ equation by Petrov–Galerkin method. Appl. Math. Comput. 218, 3673–3679 (2011)

    Article  Google Scholar 

  14. D. Irk, Sextic B-spline collocation method for the modified Burgers’ equation. Kybernetes 38(9), 1599–1620 (2009)

    Article  Google Scholar 

  15. A.G. Bratsos, in HERCMA 2009: An Implicit Numerical Scheme for the Modified Burgers’ Equation. Hellenic-European Conference on Computer Mathematics and its Applications, vol. 9, 24–26 September 2009, Athens, Greece

  16. A.G. Bratsos, A fourth-order numerical scheme for solving the modified Burgers’ equation. Comput. Math. Appl. 60, 1393–1400 (2010)

    Article  Google Scholar 

  17. A.G. Bratsos, L.A. Petrakis, An explicit numerical scheme for the modified Burgers’ equation. Int. J. Numer. Methods Biomed. Eng. 27, 232–237 (2011)

    Article  Google Scholar 

  18. R.S. Temsah, Numerical solutions for convection–diffusion equation using El- Gendi method. Commun. Nonlinear Sci. Numer. Simul. 14, 760–769 (2009)

    Article  Google Scholar 

  19. A. Griewank, T.S. El-Danaf, Efficient accurate numerical treatment of the modified Burgers’ equation. Appl. Anal. 88(1), 75–87 (2009)

    Article  Google Scholar 

  20. Y. Duan, R. Liu, Y. Jiang, Lattice Boltzmann model for the modified Burgers’ equation. Appl. Math. Comput. 202, 489497 (2008)

    Google Scholar 

  21. Z. Rong-Pei, Y. Xi-Jun, Z. Guo-Zhong, Modified Burgers’ equation by the local discontinuous Galerkin method. Chin. Phys. B 22(3), 030210 (2013)

    Article  Google Scholar 

  22. C. Chen, C.H. Hsiao, Haar wavelet method for solving lumped and distributed parameter systems. IEE Proc. Control Theory Appl. 144, 87–94 (1997)

    Article  Google Scholar 

  23. U. Lepik, Numerical solution of differential equations using Haar wavelets. Math. Comput. Simul. 68, 127–143 (2005)

    Article  Google Scholar 

  24. U. Lepik, Numerical solution of evolution equations by the Haar wavelet method. Appl. Math. Comput. 185, 695–704 (2007)

    Article  Google Scholar 

  25. U. Lepik, Solving PDEs with the aid of two-dimensional Haar wavelets. Comput. Math. Appl. 61, 1873–1879 (2011)

    Article  Google Scholar 

  26. I. Çelik, Haar wavelet method for solving generalized Burgers–Huxley equation. Arab J. Math. Sci. 18(1), 25–37 (2012)

    Article  Google Scholar 

  27. I. Çelik, Haar wavelet approximation for magnetohydrodynamic flow equations. Appl. Math. Model. 37, 3894–3902 (2013)

    Article  Google Scholar 

  28. R. Jiwari, A Haar wavelet quasilinearization approach for numerical simulation of Burgers’ equation. Comput. Phys. Commun. 183, 2413–2423 (2012)

    Article  CAS  Google Scholar 

  29. H. Kaura, R.C. Mittal, V. Mishra, Haar wavelet approximate solutions for the generalized Lane–Emden equations arising in astrophysics. Comput. Phys. Commun. 184, 2169–2177 (2013)

    Article  Google Scholar 

  30. Z. Shi, Y. Cao, Q.J. Chen, Solving 2D and 3D Poisson equations and biharmonic equations by the Haar wavelet method. Appl. Math. Model. 36, 5143–5161 (2012)

    Article  Google Scholar 

  31. C.F. Chen, C.-H. Hsiao, Wavelet approach to optimising dynamic systems. IEE Proc. Control Theory Appl. 146(2), 213–219 (1999)

    Article  Google Scholar 

  32. S.G. Rubin, R.A. Graves, Cubic spline approximation for problems in fluid mechanics (NASA TR R-436, Washington, 1975)

    Google Scholar 

  33. J.D. Hunter, Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9(3), 90–95 (2007)

    Article  Google Scholar 

  34. P.L. Sachdev, Ch. Srinivasa Rao, B.O. Enflo, Large-time asymptotics for periodic solutions of the modified Burgers’ equation. Stud. Appl. Math. 114, 307–323 (2005)

    Article  Google Scholar 

  35. C. Basdevant, M. Deville, P. Haldenwang, J.M. Lacroix, Spectral and finite difference solutions of the Burgers’ equation. Comput. Fluids 14, 23–41 (1986)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the reviewers for their invaluable suggestions towards the improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Bulut.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oruç, Ö., Bulut, F. & Esen, A. A Haar wavelet-finite difference hybrid method for the numerical solution of the modified Burgers’ equation. J Math Chem 53, 1592–1607 (2015). https://doi.org/10.1007/s10910-015-0507-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-015-0507-5

Keywords

Navigation