Skip to main content
Log in

Topological entropy and \({\fancyscript{P}}\)-chaos of a coupled lattice system with non-zero coupling constant related with Belusov–Zhabotinskii reaction

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

This paper focuses on the chaotic properties of the following systems stated by Kaneko (Phys Rev Lett 65:1391–1394, 1990) which is related to the Belusov–Zhabotinskii reaction:

$$\begin{aligned} x_{n}^{m+1}=(1-\varepsilon )f(x_{n}^{m})+ \frac{1}{2}\varepsilon \left[ f(x_{n-1}^{m})+f(x_{n+1}^{m})\right] , \end{aligned}$$

where \(m\) is discrete time index, \(n\) is lattice side index with system size \(L\), \(\varepsilon \in (0, 1]\) is coupling constant and \(f\) is a continuous selfmap of \([0, 1]\). It is shown that for every continuous selfmap \(f\) of the interval \([0, 1]\), the topological entropy of such a coupled lattice system is not less than the topological entropy of the map \(f\), and that for every continuous selfmap of the interval \([0, 1]\) with positive topological entropy, such a system is \({\fancyscript{P}}\)-chaotic, where \({\fancyscript{P}}\) denotes one of the three properties: Li–Yorke chaos, distributional chaos, \(\omega \)-chaos. These results extend the ones of Wu and Zhu (J Math Chem 50:1304–1308, 2012), (J Math Chem 50:2439–2445, 2012) and Li et al. (J Math Chem 51:1712–1719, 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.L. Adler, A.G. Konheim, M.H. McAndrew, Topological entropy. Trans. Am. Math. Soc. 114, 309–319 (1965)

  2. L.S. Block, W.A. Coppel, Dynamics in One Dimension, Springer Monographs in Mathematics (Springer, Berlin, 1992)

    Google Scholar 

  3. R. Bowen, Entropy for group endomorphisms and homogeneous spaces. Trans. Am. Math. Soc. 153, 401–414 (1971)

    Article  Google Scholar 

  4. R.A. Dana, L. Montrucchio, Dynamical complexity in duopoly games. J. Econ. Theory 40, 40–56 (1986)

    Article  Google Scholar 

  5. R.L. Devaney, An Introduction to Chaotics Dynamical Systems (Benjamin/Cummings, Menlo Park, 1986)

    Google Scholar 

  6. E.I. Dinaburg, A connection between various entropy characterizations of dynamical systems. Izv. Akad. Nauk SSSR Ser. Mat. 35, 324–366 (1971)

    Google Scholar 

  7. J.L. García Guirao, M. Lampart, Positive entropy of a coupled lattice system related with Belusov–Zhabotinskii reaction. J. Math. Chem. 48, 66–71 (2010)

    Article  Google Scholar 

  8. J.L. García Guirao, M. Lampart, Chaos of a coupled lattice system related with Belusov–Zhabotinskii reaction. J. Math. Chem. 48, 159–164 (2010)

    Article  Google Scholar 

  9. K. Kaneko, Globally coupled chaos violates law of large numbers. Phys. Rev. Lett. 65, 1391–1394 (1990)

    Article  Google Scholar 

  10. K. Kaneko, H.F. Willeboordse, Bifurcations and spatial chaos in an open flow model. Phys. Rev. Lett. 73, 533–536 (1994)

    Article  Google Scholar 

  11. M. Kohmoto, Y. Oono, Discrete model of chemical turbulence. Phys. Rev. Lett. 55, 2927–2931 (1985)

    Article  Google Scholar 

  12. R. Li, F. Huang, Y. Zhao, Z. Chen, C. Huang, The principal measure and distributional \((p, q)\)-chaos of a coupled lattice system with coupling constant \(\varepsilon =1\) related with Belusov–Zhabotinskii reaction. J. Math. Chem. 51, 1712–1719 (2013)

    Article  CAS  Google Scholar 

  13. S. Li, \(\omega \)-chaos and topological entropy. Trans. Am. Math. Soc. 339, 243–249 (1993)

    Google Scholar 

  14. T.Y. Li, J.A. Yorke, Period three implies chaos. Am. Math. Monthly 82, 985–992 (1975)

    Article  Google Scholar 

  15. P. Oprocha, Invariant scrambled sets and distributional chaos. Dyn. Syst. 24, 31–43 (2009)

    Article  Google Scholar 

  16. T. Puu, Chaos in duopoly pricing. Chaos Solitions Fractals 1, 573–581 (1991)

    Article  Google Scholar 

  17. B. Schweizer, J. Smítal, Measures of chaos and a spectral decomposition of dynamical systems on the interval. Trans. Am. Math. Soc. 344, 737–754 (1994)

    Article  Google Scholar 

  18. A.N. Sharkovskii, Coexistence of cycles of a continuous mapping of the line into itself. Ukr. Math. J. 16, 61–71 (1964)

    Google Scholar 

  19. B. VanderPool, Forced oscilations in a circuit with nonlinear resistence. Lond. Edinb. Dublin Philos. Mag. 3, 109–123 (1927)

    Google Scholar 

  20. X. Wu, P. Zhu, Li–Yorke chaos in a coupled lattice system related with Belusov–Zhabotinskii reaction. J. Math. Chem. 50, 1304–1308 (2012)

    Article  CAS  Google Scholar 

  21. X. Wu, P. Zhu, The principal measure and distributional \((p, q)\)-chaos of a coupled lattice system related with Belusov–Zhabotinskii reaction. J. Math. Chem. 50, 2439–2445 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper was partially supported by the Scientific Research Fund of Sichuan Provincial Education Department (No. 14ZB0007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Risong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Lu, T. & Li, R. Topological entropy and \({\fancyscript{P}}\)-chaos of a coupled lattice system with non-zero coupling constant related with Belusov–Zhabotinskii reaction. J Math Chem 53, 1220–1226 (2015). https://doi.org/10.1007/s10910-015-0482-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-015-0482-x

Keywords

Mathematics Subject Classification

Navigation