Journal of Mathematical Chemistry

, Volume 53, Issue 1, pp 386–401 | Cite as

Effects of reaction reversibility on ignition and flame propagation

  • Cong Li
  • Yunchao Wu
  • Zheng Chen
Original Paper


Chemical reactions in high-temperature combustion are reversible and reaction reversibility might have a great impact on fundamental combustion processes such as ignition and flame propagation. In this study, ignition and propagation of spherical flames with a reversible reaction are analyzed using the large-activation-energy asymptotic method. Analytical correlations are derived to describe the change of spherical flame propagation speed and flame temperature with flame radius. The reversibility parameter, fuel Lewis number, and ignition power are included in these correlations. These correlations can predict different flame regimes and transitions among the ignition kernel, flame ball, propagating spherical flame, and planar flame. Therefore, based on these correlations spherical flame propagation and initiation are then investigated with the emphasis on assessing the impact of reaction reversibility. It is found that similar to heat loss, reaction reversibility can greatly affect spherical flame propagation speed, Markstein length, flame ball radius, minimum ignition power, and critical ignition radius. Moreover, it is demonstrated that the influence of reaction reversibility depends on fuel Lewis number.


Ignition Spherical flame propagation Reversible reaction Markstein length Lewis number 



This work was supported by National Natural Science Foundation of China (Nos. 51322602 and 51136005), Doctoral Fund of Ministry of Education of China (No. 20120001110080), and State Key Laboratory of Engines at Tianjin University (No. K2012-02).

Supplementary material

10910_2014_430_MOESM1_ESM.doc (350 kb)
Supplementary material 1 (doc 349 KB)


  1. 1.
    B. Lewis, G. Von Elbe, Combustion Flames and Explosive of Gases, 2nd edn. (Academic Press, New York, 1961)Google Scholar
  2. 2.
    F.A. Williams, Combustion Theory, 2nd edn. (Benjamin-Cummins, Menlo Park, 1985)Google Scholar
  3. 3.
    Y.B. Zeldovich, The Mathematical Theory of Combustion and Explosions (Consultants Bureau, New York, 1985)CrossRefGoogle Scholar
  4. 4.
    B. Deshaies, G. Joulin, Combust. Sci. Technol. 37, 99 (1984)CrossRefGoogle Scholar
  5. 5.
    M.L. Frankel, G.I. Sivashinsky, Combust. Sci. Technol. 31, 131 (1983)CrossRefGoogle Scholar
  6. 6.
    P.D. Ronney, G.I. Sivashinsky, SIAM J. Appl. Math. 49, 1029 (1989)CrossRefGoogle Scholar
  7. 7.
    L.T. He, Combust. Theory Model. 4, 159 (2000)CrossRefGoogle Scholar
  8. 8.
    M. Matalon, C. Cui, J.K. Bechtold, J. Fluid Mech. 487, 179 (2003)CrossRefGoogle Scholar
  9. 9.
    J.K. Bechtold, C. Cui, M. Matalon, Proc. Combust. Inst. 30, 177 (2005)CrossRefGoogle Scholar
  10. 10.
    Z. Chen, Y. Ju, Combust. Theory Model. 11, 427 (2007)CrossRefGoogle Scholar
  11. 11.
    Z. Chen, M.P. Burke, Y. Ju, Proc. Combust. Inst. 33, 1219 (2011)CrossRefGoogle Scholar
  12. 12.
    U. Maas, J. Warnatz, Combust. Flame 74, 53 (1988)CrossRefGoogle Scholar
  13. 13.
    A. Frendi, M. Sibulkin, Combust. Sci. Technol. 73, 395 (1990)CrossRefGoogle Scholar
  14. 14.
    H.J. Kim, S.H. Chung, C.H. Sohn, KSME Int. J. 18, 838 (2004)Google Scholar
  15. 15.
    W.K. Zhang, Z. Chen, W.J. Kong, Combust. Flame 159, 151 (2012)CrossRefGoogle Scholar
  16. 16.
    M. Champion, B. Deshaies, G. Joulin, K. Kinoshita, Combust. Flame 65, 319 (1986)CrossRefGoogle Scholar
  17. 17.
    Y. Ko, R.W. Anderson, V.S. Arpaci, Combust. Flame 83, 75 (1991)CrossRefGoogle Scholar
  18. 18.
    A.P. Kelley, G. Jomaas, C.K. Law, Combust. Flame 156, 1006 (2009)CrossRefGoogle Scholar
  19. 19.
    P.D. Ronney, Opt. Eng. 33, 510 (1994)CrossRefGoogle Scholar
  20. 20.
    H. Zhang, Z. Chen, Combust. Flame 158, 1520 (2011)CrossRefGoogle Scholar
  21. 21.
    H. Zhang, P. Guo, Z. Chen, Proc. Combust. Inst. 34, 3267 (2013)CrossRefGoogle Scholar
  22. 22.
    J.W. Dold, Combust. Theory Model. 11, 909 (2007)CrossRefGoogle Scholar
  23. 23.
    V.V. Gubernov, H.S. Sidhu, G. Mercer, A.V. Kolobov, A.A. Polezhaev, J. Math. Chem. 44, 816 (2008)CrossRefGoogle Scholar
  24. 24.
    G.J. Sharpe, Combust. Theory Model. 12, 717 (2008)CrossRefGoogle Scholar
  25. 25.
    V. Gubernov, A.V. Kolobov, A.A. Polezhaev, H.S. Sidhu, G. Mercer, Proc. R Soc. A 466, 2747 (2010)CrossRefGoogle Scholar
  26. 26.
    V.V. Gubernov, A.V. Kolobov, A.A. Polezhaev, H.S. Sidhu, Combust. Theory Model. 15, 385 (2011)CrossRefGoogle Scholar
  27. 27.
    G.J. Sharpe, S.A.E.G. Falle, Combust. Flame 158, 925 (2011)CrossRefGoogle Scholar
  28. 28.
    V.V. Gubernov, A.V. Kolobov, A.A. Polezhaev, H.S. Sidhu, Combust. Flame 160, 1060 (2013)CrossRefGoogle Scholar
  29. 29.
    V.N. Kurdyumov, D. Fernandez-Galisteo, Combust. Flame 159, 3110 (2012)CrossRefGoogle Scholar
  30. 30.
    H. Zhang, Z. Chen, Combust. Theory Model. 17, 682 (2013)CrossRefGoogle Scholar
  31. 31.
    J. Daou, Combust. Theory Model. 12, 349 (2008)CrossRefGoogle Scholar
  32. 32.
    J. Daou, Combust. Theory Model. 13, 189 (2009)CrossRefGoogle Scholar
  33. 33.
    J. Daou, Combust. Theory Model. 15, 437 (2011)CrossRefGoogle Scholar
  34. 34.
    C.K. Law, Combustion Physics (Cambridge University Press, Cambridge, 2006)CrossRefGoogle Scholar
  35. 35.
    Y. Wu, Z. Chen, Acta Mech. Sin. 28, 359 (2012)CrossRefGoogle Scholar
  36. 36.
    Z. Chen, Combust. Flame 158, 291 (2011)CrossRefGoogle Scholar
  37. 37.
    A.P. Kelley, C.K. Law, Combust. Flame 156, 1844 (2009)CrossRefGoogle Scholar
  38. 38.
    Z. Chen, X. Gou, Y. Ju, Combust. Sci. Technol. 182, 124 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.State Key Laboratory for Turbulence and Complex Systems (SKLTCS), Department of Mechanics and Engineering Science, College of EngineeringPeking UniversityBeijingChina
  2. 2.Department of Aeronautics and Astronautics, College of EngineeringPeking UniversityBeijingChina
  3. 3.Department of Mechanical EngineeringUniversity of ConnecticutStorrsUSA

Personalised recommendations