Journal of Mathematical Chemistry

, Volume 53, Issue 1, pp 29–40 | Cite as

Quantitative study of BSA coating silica nanoparticle

  • Duangkamon Baowan
  • Volkhard Helms
Original Paper


The loading of biomolecules on nanoparticles might be thought of as a first step to design a cargo in drug delivery system. Here, we study a quantity of bovine serum albumin (BSA) surrounding the silica nanoparticle. The silica nanoparticle is modeled as a perfect sphere whereas the BSA is represented by an ellipsoid. On utilizing a continuous approximation, the electrostatic and van der Waals interactions can be analytically expressed. Further, a number of BSA molecules coating on the nanoparticles of various sizes can be simply determined as a function of the protein ring radius. Our finding is in a good agreement found in experiment and this can be a guide to evaluate the number of protein on other type of spherical nanoparticles.


Bovine serum albumin Silica nanoparticle Lennard-Jones function Coulombic function 



This work is supported by a postdoctoral fellowship to D.B. by Alexander von Humboldt Foundation. D.B. gratefully thanks the Thailand Research Fund (MRG5680072). The authors also gratefully thanks H. Peuschel and A. Kraegeloh from Nano Cell Interactions Group, INM-Leibniz Institute for New Materials, Saarbrücken, Germany for many helpful discussion.


  1. 1.
    I. Lynch, T. Cedervall, M. Lundqvist, C. Cabaleiro-Lago, S. Linse, K.A. Dawson, The nanoparticle–protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Adv. Colloid Interface Sci. 134–135, 167–174 (2007)CrossRefGoogle Scholar
  2. 2.
    M.J. Heller, DNA microarray technology: devices, systems, and applications. Annu. Rev. Biomed. Eng. 4, 129–153 (2002)CrossRefGoogle Scholar
  3. 3.
    I.I. Slowing, J.L. Vivero-Escoto, C.-W. Wu, V.S.-Y. Lin, Mesoporous silicananoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev. 60, 1278–1288 (2008)CrossRefGoogle Scholar
  4. 4.
    C. Kneuer, M. Sameti, U. Bakowsky, T. Schiestel, H. Schirra, H. Schmidt, C.-M. Lehr, A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro. Bioconjug. Chem. 11, 926–932 (2000)CrossRefGoogle Scholar
  5. 5.
    D. Luo, E. Han, N. Belcheva, W.M. Saltzman, A self-assembled, modular DNA delivery system mediated by silicananoparticles. J. Control. Release 95, 333–341 (2004)CrossRefGoogle Scholar
  6. 6.
    D.R. Radu, C.-Y. Lai, K. Jeftinija, E.W. Rowe, S. Jeftinija, V.S.-Y. Lin, A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. J. Am. Chem. Soc. 126, 1321–13217 (2004)Google Scholar
  7. 7.
    I. Roy, T.Y. Ohulchanskyy, D.J. Bharali, H.E. Pudavar, R.A. Mistretta, N. Kaur, P.N. Prasad, Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery. Proc. Natl. Acad. Sci. USA 102, 279–284 (2005)CrossRefGoogle Scholar
  8. 8.
    D.J. Bharali, I. Klejbor, E.K. Stachowiak, P. Dutta, I. Roy, N. Kaur, E.J. Bergey, P.N. Prasad, M.K. Stachowiak, Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proc. Natl. Acad. Sci. USA 102, 11539–11544 (2005)CrossRefGoogle Scholar
  9. 9.
    T. Xia, M. Kovochich, M. Liong, H. Meng, S. Kabehie, S. George, J.I. Zink, A.E. Nel, Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano 3, 3273–3286 (2009)Google Scholar
  10. 10.
    I.I. Slowing, B.G. Trewyn, S. Giri, V.S.-Y. Lin, Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv. Funct. Mater. 17, 1225–1236 (2007)CrossRefGoogle Scholar
  11. 11.
    J.-F. Chen, H.-M. Ding, J.-X. Wang, L. Shao, Preparation and characterization of porous hollow silicananoparticles for drug delivery application. Biomaterials 25, 723–727 (2004)CrossRefGoogle Scholar
  12. 12.
    J.L. Vivero-Escoto, I.I. Slowing, B.G. Trewyn, V.S.-Y. Lin, Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small 6, 1952–1967 (2010)CrossRefGoogle Scholar
  13. 13.
    S. Schübbe, C. Schumann, C. Cavelius, M. Koch, T. Mueller, A. Kraegeloh, Size-dependent localization and quantitative evaluation of the intracellular migration of silica nanoparticles in Caco-2 cells. Chem. Mater. 24, 914–923 (2012)CrossRefGoogle Scholar
  14. 14.
    D.C. Carter, X.-M. He, S.H. Munson, P.D. Twigg, K.M. Gernert, M.B. Broom, T.Y. Miller, Three-dimensional structure of human serum albumin. Science 244, 1195–1198 (1989)Google Scholar
  15. 15.
    A.K. Wright, M.R. Thompson, Hydrodynamic structure of bovine serum albumin determined by transient electric birefringence. Biophys. J. 15, 137–141 (1975)Google Scholar
  16. 16.
    X.M. He, D.C. Carter, Atomic structure and chemistry of human serum albumin. Nature 358, 209–215 (1992)CrossRefGoogle Scholar
  17. 17.
    C. Röcker, M. Pötzl, F. Zhang, W.J. Park, G.U. Nienhaus, A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat. Nano 4, 577–580 (2009)CrossRefGoogle Scholar
  18. 18.
    T.J. Su, J.R. Lu, R.K. Thomas, Z.F. Cui, J. Penfold, The conformational structure of bovine serum albumin layers adsorbed at the silica-water interface. J. Phys. Chem. B 102, 8100–8108 (1998)CrossRefGoogle Scholar
  19. 19.
    L.A. Girifalco, M. Hodak, R.S. Lee, Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys. Rev. B 62, 13104–13110 (2000)CrossRefGoogle Scholar
  20. 20.
    M. Hodak, L.A. Girifalco, Fullerenes inside carbon nanotubes and multi-walled carbon nanotubes: optimum and maximum sizes. Chem. Phys. Lett. 350, 405–411 (2001)CrossRefGoogle Scholar
  21. 21.
    D. Baowan, B.J. Cox, J.M. Hill, Instability of \(\text{ C }_{60}\) fullerene interacting with lipid bilayer. J. Mol. Model. 18, 549–557 (2012)CrossRefGoogle Scholar
  22. 22.
    D. Baowan, H. Peuschel, A. Kraegeloh, V. Helms, Energetics of liposomes encapsulating silica nanoparticles. J. Mol. Model. 19, 2459–2472 (2013)CrossRefGoogle Scholar
  23. 23.
    W.C. Still, A. Tempczyk, R.C. Hawley, T. Hendrickson, Semianalytical treatment of solvation for molecular mechanics and dynamics. J. Am. Chem. Soc. 112, 6127–6129 (1990)CrossRefGoogle Scholar
  24. 24.
    E.R. Cruz-Chu, A. Aksimentiev, K. Schulten, Water-silica force field for simulating nanodevices. J. Phys. Chem. B 110, 21497–21508 (2006)Google Scholar
  25. 25.
    D. Makimura, C. Metin, T. Kabashima, T. Matsuoka, Q.P. Nguyen, C.R. Miranda, Combined modeling and experimental studies of hydroxylated silica nanoparticles. J. Mater. Sci. 45, 5084–5088 (2010)CrossRefGoogle Scholar
  26. 26.
    S.L. Mayo, B.D. Olafson, W.A. Goddard III, A generic force field for molecular simulations. J. Phys. Chem. 94, 8897–8909 (1990)CrossRefGoogle Scholar
  27. 27.
    D. Baowan, N. Thamwattana, Modelling selective separation of trypsin and lysozyme using mesoporous silica. Micro. Meso. Mater. 176, 209–214 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceMahidol UniversityBangkokThailand
  2. 2.Center for BioinformaticsSaarland UniversitySaarbrückenGermany

Personalised recommendations