Journal of Mathematical Chemistry

, Volume 52, Issue 7, pp 1831–1840 | Cite as

Effect of activation volume on the defect-induced anomalous electronic transport in Rb\(_{0.8}\)Fe\(_2\)Se\(_2\)

  • Rainer Kwang-Hua Chu
Original Paper


We adopted an absolute-reaction model which is considering the hole(defect)-induced charged frictionless transport to explain the unusual experiment: Two single crystalline samples of the same nominal composition Rb \(_{0.8}\)Fe\(_2\)Se\(_2\) were prepared using the self-flux technique via two different precursor routes. Although the difference in the final chemical composition falls within a narrow range, one was superconducting with a \(T_c \sim 31\) K, while the other behaves like a narrow gap semiconductor.


Absolute reaction Boundary perturbation Chemical proximity 


  1. 1.
    J.G. Guo, S.F. Jin, G. Wang, S.C. Wang, K.X. Zhu, T.T. Zhou, M. He, X.L. Chen, Superconductivity in the iron selenide KxFe2Se2 (0x1.0). Phys. Rev. B 82, 180520(R) (2010)CrossRefGoogle Scholar
  2. 2.
    Y. Mizuguchi, H. Takeya, Y. Kawasaki, T. Ozaki, S. Tsuda, T. Yamaguchi, Y. Takano, Transport properties of the new Fe-based superconductor. Appl. Phys. Lett. 98, 042511 (2011)CrossRefGoogle Scholar
  3. 3.
    K. Shimizu, T. Kimura, S. Furomoto, K. Takeda, K. Kontani, Y. Onuki, K. Amaya, Superconductivity in the non-magnetic state of iron under pressure. Nature 412, 316 (2011)CrossRefGoogle Scholar
  4. 4.
    F.-C. Hsu, J.-Y. Luo, K.-W. Yeh, T.-K. Chen, T.-W. Huang, P.M. Wu, Y.-C. Lee, Y.-L. Huang, Y.-Y. Chu, D.-C. Yan, M.-K. Wu, Superconductivity in the PbO-type structure alpha-FeSe. Proc. Nat. Acad. Sci. (USA) 105, 14262 (2008)Google Scholar
  5. 5.
    A.F. Wang, J.J. Ying, Y.J. Yan, R.H. Liu, X.G. Luo, Z.Y. Li, X.F. Wang, M. Zhang, G.J. Ye, P. Cheng, Z.J. Xiang, X.H. Chen, Superconductivity at 32 K in single-crystalline Rb\(_x\)Fe\(_{2?y}\)Se\(_2\). Phys. Rev. B 83, 060512 (2011)CrossRefGoogle Scholar
  6. 6.
    J.T. Park, G. Friemel, Y. Li, J.-H. Kim, V. Tsurkan, J. Deisenhofer, H.-A. Krug von Nidda, A. Loidl, B. Keimer, D.S. Inosov, Magnetic resonant mode in the low-energy spin-excitation spectrum of superconducting single crystals. Phys. Rev. Lett. 107, 177005 (2011)CrossRefGoogle Scholar
  7. 7.
    V. Svitlyk, D. Chernyshov, E. Pomjakushina, A. Krzton-Maziopa, K. Conder, V. Pomjakushin, V. Dmitriev, Temperature and pressure evolution of the crystal structure of A\(_x\)(Fe\(_{1-y}\)Se)\(_2\) (A = Cs, Rb, K) studied by synchrotron powder diffraction. Inorg. Chem. 50, 10703 (2011)CrossRefGoogle Scholar
  8. 8.
    M. Wang, M.Y. Wang, G.N. Li, Q. Huang, C.H. Li, G.T. Tan, C.L. Zhang, H.B. Cao, W. Tian, Y. Zhao, Y.C. Chen, X.Y. Lu, B. Sheng, H.Q. Luo, S.L. Li, M.H. Fang, J.L. Zarestky, W. Ratcliff, M.D. Lumsden, J.W. Lynn, P.C. Dai, Antiferromagnetic order and superlattice structure in nonsuperconducting and superconducting Rb\(_y\)Fe\(_{1.6+x}\)Se\(_2\). Phys. Rev. B 84, 194504 (2011)Google Scholar
  9. 9.
    V. Tsurkan, J. Deisenhofer, A. Guenther, H.-A. Krug von Nidda, S. Widmann, A. Loidl, Phys. Rev. B 84, 144520 (2011)Google Scholar
  10. 10.
    S. Bosma, R. Puzniak, A. Krzton-Maziopa, M. Bendele, E. Pomjakushina, K. Conder, H. Keller, S. Weyeneth, Magnetic-field tuned anisotropy in superconducting Rb\(_x\)Fe\(_{2-y}\)Se\(_2\). Phys. Rev. B 85, 064509 (2012)CrossRefGoogle Scholar
  11. 11.
    M. Gooch, B. Lv, L.Z. Deng, T. Muramatsu, J. Meen, Y.Y. Xue, B. Lorenz, C.W. Chu, High-pressure study of superconducting and nonsuperconducting single crystals of the same nominal composition Rb\(_{0.8}\)Fe\(_2\)Se\(_2\). Phys. Rev. B 84, 184517 (2011)CrossRefGoogle Scholar
  12. 12.
    H.K. Onnes, The resistance of pure mercury at helium temperatures. Phys. Lab. Univ. Leiden 12, 120 (1911)Google Scholar
  13. 13.
    J. Bardeen, Two-fluid model of superconductivity. Phys. Rev. Lett. 1, 399 (1958)CrossRefGoogle Scholar
  14. 14.
    H. Eyring, M. Polanyi, Über Einfache Gasreaktionen? Zeit. Phys. Chem. B 12, 279 (1931) H. Eyring, The activated complex in chemical reactions? J. Chem. Phys. 3, 107 (1935)CrossRefGoogle Scholar
  15. 15.
    H. Eyring, G.E. Kimball, J. Walter, Quantum Chemistry (Wiley, New York, 1944)Google Scholar
  16. 16.
    H. Eyring, Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283 (1936)CrossRefGoogle Scholar
  17. 17.
    F.H. Ree, T.S. Ree, T. Ree, H. Eyring, Random walk and related physical problems. Adv. Chem. Phys. 4, 1 (1962)Google Scholar
  18. 18.
    C.W. Kwang-Hua, Effect of activation volume on the defect-induced superconductivity in semiconducting superlattices. J. Solid State Chem. 192, 179 (2012)Google Scholar
  19. 19.
    C.W. Kwang-Hua, Effect of defects on the pressure-induced transitional electronic transport in TbTe\(_3\) and ZrTe\(_3\). Chem. Phys. 409, 37 (2012)Google Scholar
  20. 20.
    C.W. Kwang-Hua, Effect of activation volume on the pressure-induced anomalous resistances in EuFe\(_2\)As\(_2\). Chem. Phys. 415, 186 (2013)Google Scholar
  21. 21.
    Y.g. Oh, M.S. Jhon, H. Eyring, Significant structure theory applied to liquid helium-3. PNAS (USA) 74, 4739 (1977)Google Scholar
  22. 22.
    R. Ryoo, M.S. John, H. Eyring, Temperature and pressure dependence of viscosity of quantum liquid He-4 according to significant structure theory. PNAS (USA) 77, 4399 (1980)Google Scholar
  23. 23.
    W.A.B. Evans, G. Rickayzen, On the equivalence of the phenomena of the Meissner effect and infinite conductivity in superconductors. Ann. Phys. (NY) 33, 275 (1965)Google Scholar
  24. 24.
    V.Z. Kresin, S.A. Wolf, Inhomoneous superconducting state and intrinsic Tc: Near room temperature superconductivity in the cuprates. arXiv:1109.0341
  25. 25.
    S.V. Borisenko, A.N. Yaresko, D.V. Evtushinsky, V.B. Zabolotnyy, A.A. Kordyuk, J. Maletz, B. Bühner, Z. Shermadini, H. Luetkens, K. Sedlak, R. Khasanov, A. Amato, A. Krzton-Maziopa, K. Conder, E. Pomjakushina, H-H. Klauss, E. Rienks, ”Cigar” Fermi surface as a possible requisite for superconductivity in iron-based superconductors. arXiv:1204.1316
  26. 26.
    J. Echeverría, S. Alvarez, Application of symmetry operation measures in structural inorganic chemistry. Inorg. Chem. 47, 10965 (2008)CrossRefGoogle Scholar
  27. 27.
    W. Bronger, A. Kyas, P. Müller, The antiferromagnetic structures of KFeS2, RbFeS2, KFeSe2, and RbFeSe2 and the correlation between magnetic moments and crystal field calculations. J. Solid State Chem. 70, 262 (1987)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of MathematicsSchool of Science, North University of ChinaTaiyuanP.R. China

Personalised recommendations