Advertisement

Journal of Mathematical Chemistry

, Volume 52, Issue 7, pp 1794–1806 | Cite as

Symmetry-adapted formulation of the combined G-particle-hole hypervirial equation and Hermitian operator method

  • Diego R. Alcoba
  • Gustavo E. Massaccesi
  • Ofelia B. Oña
  • Juan J. Torres-Vega
  • Luis Lain
  • Alicia Torre
Original Paper
  • 102 Downloads

Abstract

High accuracy energies of low-lying excited states, in molecular systems, have been determined by means of a procedure which combines the G-particle-hole hypervirial (GHV) equation method (Alcoba et al. in Int J Quantum Chem 109:3178, 2009) and the Hermitian operator (HO) one (Bouten et al. in Nucl Phys A 202:127, 1973). This work reports a suitable strategy to introduce the point group symmetry within the framework of the combined GHV-HO method, which leads to an improvement of the computational efficiency. The resulting symmetry-adapted formulation has been applied to illustrate the computer timings and the hardware requirements in selected chemical systems of several geometries. The new formulation is used to study the low-lying excited states torsional potentials in the ethylene molecule.

Keywords

G-particle-hole matrix Reduced density matrix Hypervirial of the G-particle-hole operator Hermitian operator method Point group symmetry 

Notes

Acknowledgments

This report has been financially supported by the Projects UBACYT 20020100100197 and 20020100100502 (Universidad de Buenos Aires, Argentina), PIP N. 11220090100061, 11220090100369 and 11220080100398 (Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina), DI-407-13/I(Universidad Andres Bello, Chile), and GIU12/09 and UFI11/07 (Universidad del Pais Vasco). We thank the Universidad del Pais Vasco for allocation of computational resources.

References

  1. 1.
    E.R. Davidson, Reduced Density Matrices in Quantum Chemistry (Academic Press, New York, 1976)Google Scholar
  2. 2.
    A.J. Coleman, V.I. Yukalov, Reduced Density Matrices: Coulson’s Challenge (Springer, New York, 2000)CrossRefGoogle Scholar
  3. 3.
    Reduced Density Matrices with Applications to Physical and Chemical Systems, eds. by A.J. Coleman, R.M. Erdahl. Queen’s Papers on Pure and Applied Mathematics—No. 11 (Queen’s University, Kingston, ON, 1968)Google Scholar
  4. 4.
    Reduced Density Matrices with Applications to Physical and Chemical Systems II, eds. by R.M. Erdahl. Queen’s Papers on Pure and Applied Mathematics—No. 40 (Queen’s University, Kingston, ON, 1974)Google Scholar
  5. 5.
    Density Matrices and Density Functionals, eds. by R.M. Erdahl, V. Smith. Proceedings of the A.J. Coleman Symposium, Kingston, ON, 1985 (Reidel, Dordrecht, 1987)Google Scholar
  6. 6.
    Many-electron Densities and Reduced Density Matrices, ed. by J. Cioslowski (Kluwer, Dordrecht, 2000)Google Scholar
  7. 7.
    Reduced-Density-matrix Mechanics with Applications to Many-electron Atoms and Molecules, ed. by D.A. Mazziotti. Adv. Chem. Phys. vol. 134 (Wiley, New York, 2007) and references thereinGoogle Scholar
  8. 8.
    D.A. Mazziotti, Chem. Rev. 112, 244 (2012) and references thereinGoogle Scholar
  9. 9.
    D.R. Alcoba, C. Valdemoro, L.M. Tel, E. Pérez-Romero, Int. J. Quantum Chem. 109, 3178 (2009)CrossRefGoogle Scholar
  10. 10.
    C. Valdemoro, D.R. Alcoba, L.M. Tel, E. Pérez-Romero, Int. J. Quantum Chem. 109, 2622 (2009)CrossRefGoogle Scholar
  11. 11.
    D.R. Alcoba, L.M. Tel, E. Pérez-Romero, C. Valdemoro, Int. J. Quantum Chem. 111, 937 (2011)CrossRefGoogle Scholar
  12. 12.
    D.R. Alcoba, C. Valdemoro, L.M. Tel, E. Pérez-Romero, O. Oña, J. Phys. Chem. A 115, 2599 (2011)CrossRefGoogle Scholar
  13. 13.
    C. Valdemoro, D.R. Alcoba, O.B. Oña, L.M. Tel, E. Pérez-Romero, J.M. Oliva, Chem. Phys. 399, 59 (2012)Google Scholar
  14. 14.
    C. Valdemoro, D.R. Alcoba, L.M. Tel, E. Pérez-Romero, Int. J. Quantum Chem. 111, 245 (2011)CrossRefGoogle Scholar
  15. 15.
    D.R. Alcoba, C. Valdemoro, L.M. Tel, Comput. Theor. Chem. 1003, 55 (2013)Google Scholar
  16. 16.
    M. Bouten, P. Van Leuven, M.V. Mihailovich, M. Rosina, Nucl. Phys. A 202, 127 (1973)CrossRefGoogle Scholar
  17. 17.
    M. Bouten, P. Van Leuven, M.V. Mihailovich, M. Rosina, Nucl. Phys. A 221, 173 (1974)CrossRefGoogle Scholar
  18. 18.
    C. Valdemoro, D.R. Alcoba, O.B. Oña, L.M. Tel, E. Pérez-Romero, J. Math. Chem. 50, 492 (2012)Google Scholar
  19. 19.
    C. Valdemoro, D.R. Alcoba, L.M. Tel, Int. J. Quantum Chem. 112, 2965 (2012)CrossRefGoogle Scholar
  20. 20.
    D.R. Alcoba, O.B. Oña, C. Valdemoro, L.M. Tel, G.E. Massaccesi, J. Math. Chem. 50, 2478 (2012)Google Scholar
  21. 21.
    G.E. Massaccesi, D.R. Alcoba, O.B. Oña, J. Math. Chem. 50, 2155 (2012)Google Scholar
  22. 22.
    P.R. Surjan, Second Quantized Approach to Quantum Chemistry: An Elementary Introduction (Springer, Berlin, 1989)CrossRefGoogle Scholar
  23. 23.
    C. Garrod, J.K. Percus, J. Math. Phys. 5, 1756 (1964)CrossRefGoogle Scholar
  24. 24.
    M.V. Mihailovic, M. Rosina, Nucl. Phys. A 130, 386 (1969)CrossRefGoogle Scholar
  25. 25.
    D.R. Alcoba, C. Valdemoro, Phys. Rev. A 64, 062105 (2001)CrossRefGoogle Scholar
  26. 26.
    F. Colmenero, C. Pérez del Valle, C. Valdemoro, Phys. Rev. A 47, 971 (1993)CrossRefGoogle Scholar
  27. 27.
    H. Nakatsuji, K. Yasuda, Phys. Rev. Lett. 76, 1039 (1996)CrossRefGoogle Scholar
  28. 28.
    D. Mazziotti, Phys. Rev. A 60, 3618 (1999)CrossRefGoogle Scholar
  29. 29.
    C. Valdemoro, L.M. Tel, E.P. Pérez-Romero, in Many-electron Densities and Density Matrices, ed. by J. Cioslowski (Kluwer, Boston, 2000)Google Scholar
  30. 30.
    L.M. Tel, E. Pérez-Romero, F.J. Casquero, C. Valdemoro, Phys. Rev. A 67, 052504 (2003)CrossRefGoogle Scholar
  31. 31.
    NIST Computational Chemistry Comparison and Benchmark Database, ed. by R.D. Johnson III. NIST Standard Reference Database No. 101 (National Institute of Standard and Technology, 2006). http://srdata.nist.gov/cccbdb
  32. 32.
    T.D. Crawford, C.D. Sherrill, E.F. Valeev, J.T. Fermann, R.A. King, M.L. Leininger, S.T. Brown, C.L. Janssen, E.T. Seidl, J.P. Kenny, W.D. Allen, J. Comput. Chem. 28, 1610 (2007)CrossRefGoogle Scholar
  33. 33.
    A.J. Merer, R.S. Mulliken, Chem. Rev. 69, 639 (1969)CrossRefGoogle Scholar
  34. 34.
    F. Colmenero, C. Valdemoro, Int. J. Quantum Chem. 51, 369 (1994)CrossRefGoogle Scholar
  35. 35.
    D.A. Mazziotti, Phys. Rev. A 57, 4219 (1998)CrossRefGoogle Scholar
  36. 36.
    C. Valdemoro, L.M. Tel, E. Pérez-Romero, A. Torre, J. Mol. Struct. (Theochem) 537, 1 (2001)CrossRefGoogle Scholar
  37. 37.
    D.R. Alcoba, F.J. Casquero, L.M. Tel, E. Pérez-Romero, C. Valdemoro, Int. J. Quantum Chem. 102, 620 (2005)CrossRefGoogle Scholar
  38. 38.
    Z. Szekeres, A. Szabados, M. Kállay, P.R. Surjan, Phys. Chem. Chem. Phys. 3, 696 (2001)CrossRefGoogle Scholar
  39. 39.
    D.A. Mazziotti, Phys. Rev. A 68, 052501 (2003)CrossRefGoogle Scholar
  40. 40.
    J.D. Farnum, D.A. Mazziotti, Chem. Phys. Lett. 400, 90 (2004)CrossRefGoogle Scholar
  41. 41.
    J. Simons, Adv. Quantum Chem. 50, 213 (2005). and references thereinCrossRefGoogle Scholar
  42. 42.
    D. Vanfleteren, P.D. Van Neck, P.W. Ayers, R.C. Morrison, P. Bultinck, J. Chem. Phys. 130, 194104 (2009)CrossRefGoogle Scholar
  43. 43.
    H. van Aggelen, B. Verstichel, G. Acke, M. Degroote, P. Bultinck, P.W. Ayers, D. Van Neck, Comput. Theor. Chem. 1003, 50 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Diego R. Alcoba
    • 1
    • 2
  • Gustavo E. Massaccesi
    • 3
  • Ofelia B. Oña
    • 4
  • Juan J. Torres-Vega
    • 5
  • Luis Lain
    • 6
  • Alicia Torre
    • 6
  1. 1.Departamento de Física, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Instituto de Física de Buenos AiresConsejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
  3. 3.Departamento de Ciencias Exactas, Ciclo Básico ComúnUniversidad de Buenos AiresBuenos AiresArgentina
  4. 4.Instituto de Investigaciones Fisicoquímicas Teóricas y AplicadasUniversidad Nacional de La Plata, CCT La Plata, Consejo Nacional de Investigaciones Científicas y TécnicasLa PlataArgentina
  5. 5.Departamento de Ciencias Químicas, Facultad de Ciencias ExactasUniversidad Andres BelloSantiago de ChileChile
  6. 6.Departamento de Química Física, Facultad de Ciencia y TecnologíaUniversidad del País VascoBilbaoSpain

Personalised recommendations