Advertisement

Journal of Mathematical Chemistry

, Volume 52, Issue 6, pp 1599–1609 | Cite as

Effective interactions and block diagonalization in quantum-mechanical problems

  • Timothy B. Boykin
Original Paper
  • 229 Downloads

Abstract

Many models of condensed-matter systems have interactions with unexpected features: for example, exclusively distant-neighbor spin–orbit interactions. On first inspection these interactions seem physically questionable in view of the basis states used. However, such interactions can be physically reasonable if the model is an effective one, in which the basis states are not exactly as described, but instead include components of states removed from the problem. Mathematically, an effective model results from partitioning the Hamiltonian matrix, which can be accomplished by energy-dependent or energy-independent methods. We examine effective models of both types, with a special emphasis on energy-independent approaches. We show that an appropriate choice of basis makes the partitioning simpler and more accurate. We illustrate the method by calculating the spin–orbit splitting in graphene.

Keywords

Perturbation theory Partitioned matrix Hamiltonian matrix Effective hamiltonian 

Mathematics Subject Classification

81Q05 81Q15 

References

  1. 1.
    C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 146802 (2005)CrossRefGoogle Scholar
  2. 2.
    P.O. Löwdin, J. Math. Phys. 3, 969 (1962)CrossRefGoogle Scholar
  3. 3.
    P.O. Löwdin, J. Chem. Phys. 19, 1396 (1951)CrossRefGoogle Scholar
  4. 4.
    P.O. Löwdin, Phys. Rev. 139, A357 (1965)CrossRefGoogle Scholar
  5. 5.
    D. Yao, J. Shi, Am. J. Phys. 68, 278 (2000)CrossRefGoogle Scholar
  6. 6.
    P. Surjan, A. Szabados, Int. J. Quantum Chem. 90, 20 (2002)CrossRefGoogle Scholar
  7. 7.
    Y. Yao, F. Ye, X.-L. Qi, S.C. Zhang, Z. Fang, Phys. Rev. B 75, 041401 (2007)CrossRefGoogle Scholar
  8. 8.
    L.M. Zhang, M.M. Fogler, D.P. Arovas, Phys. Rev. B 84, 075451 (2011)CrossRefGoogle Scholar
  9. 9.
    S. Konschuh, M. Gmitra, J. Fabian, Phys. Rev. B 82, 245412 (2010)CrossRefGoogle Scholar
  10. 10.
    G. Grosso, S. Moroni, G.P. Parravicini, Phys. Rev. B 40, 12328 (1989)CrossRefGoogle Scholar
  11. 11.
    F. Constantinescu, E. Magyari, Problems in Quantum Mechanics, Trans. By V.V. Grecu, Ed. by J.A. Spiers (Pergamon, New York, 1985), Ch. I., Pr. 27Google Scholar
  12. 12.
    J.E. Campbell, Proc. Lond. Math. Soc. 28, 381 (1896)CrossRefGoogle Scholar
  13. 13.
    H.F. Baker, Proc. Lond. Math. Soc. 34, 347 (1901)CrossRefGoogle Scholar
  14. 14.
    D. Sinha, S.K. Mukhopadhyay, R. Chaudhuri, D. Mukherjee, Chem. Phys. Lett. 154, 544 (1989)CrossRefGoogle Scholar
  15. 15.
    I. Lindgren, J. Phys. B At. Mol. Phys. 7, 2441 (1974)CrossRefGoogle Scholar
  16. 16.
    P. Szakacs, P.R. Surjan, D. Mukherjee, S. Das, Phys. Rev. B 77, 193407 (2008)CrossRefGoogle Scholar
  17. 17.
    T.B. Boykin, M. Luisier, G. Klimeck, X. Jiang, N. Kharche, Y. Zhou, S.K. Nayak, J. Appl. Phys. 109, 104304 (2011)CrossRefGoogle Scholar
  18. 18.
    J.C. Slater, G.F. Koster, Phys. Rev. 94, 1498 (1954)CrossRefGoogle Scholar
  19. 19.
    W.A. Harrison, Electronic Structure (Dover, New York, 1989)Google Scholar
  20. 20.
    W.A. Harrison, Elementary Electronic Structure (World Scientific, New Jersey, 1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringThe University of Alabama in HuntsvilleAL USA

Personalised recommendations