Journal of Mathematical Chemistry

, Volume 52, Issue 6, pp 1581–1598 | Cite as

Enumerating stereo-isomers of tree-like polyinositols

  • Kecai Deng
  • Jianguo Qian
Original Paper


Enumeration of molecules is one of the fundamental problems in bioinformatics and chemoinformatics which is also important from a practical viewpoint. We consider the problem of enumerating the stereo-isomers of tree-like polyinositol molecules (with chemical formula \(\hbox {C}_{6n}\hbox {O}_{5n+6}\hbox {H}_{4n+2}\) where \(n\) is the number of hexagonal oinositol rings) and monosubstituted tree-like polyinositols (with chemical formula \(\hbox {C}_{6n}\hbox {O}_{5n+6}\hbox {H}_{4n+1}\hbox {Z}\)). We establish recursion counting formulas for the numbers of the stereo-isomers for these two classes of molecules, in which chirality is also taken into account. In our study, the generating function, Pólya enumeration theory and ‘Dissimilarity Characteristic Theorem’ play important roles. Compared to some known computer programs such as ISOMERS, MOLGEN, exhaustive construction and Dynamic Programming etc., our method is more efficient to our enumeration problem with larger number of inositol rings. Further more, based on the obtained recursion formulas, we derive the asymptotic values for the numbers of these two stereo-isomers from which we conclude that almost all tree-like and monosubstituted tree-like polyinositols are chiral.


Tree-like polyinositol Enumeration Asymptotic behavior 

Supplementary material

10910_2014_338_MOESM1_ESM.pdf (81 kb)
Supplementary material 1 (pdf 80 KB)


  1. 1.
    A. Cayley, On the theory of the analytical forms called trees. Phil. Mag. 13, 172–176 (1857)Google Scholar
  2. 2.
    G. Pólya, R.C. Read, Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds (Springer, Berlin, 1987)CrossRefGoogle Scholar
  3. 3.
    T. Imada, S. Ota, H. Nagamochi, T. Akutsu, Efficient enumeration of stereoisomers of outerplanar chemical graphs using dynamic programming. J. Chem. Inf. Model. 51, 2788–2807 (2011)CrossRefGoogle Scholar
  4. 4.
    J.L. Faulon, D. Visco, D. Roe, Enumerating molecules, in Reviews in Computational Chemistry, ed. by K.B. Lipkowitz, R. Larter, T.R. cundari (Wiley-VCH, Hoboken, 2005), pp. 209–257Google Scholar
  5. 5.
    L. Bouveault, De l’isomérie optique dans les corps à chaines fermées. Bull. la Socieété Chimique Paris 11, 44–147 (1894)Google Scholar
  6. 6.
    T. Posternak, The Cyclitols (Hermann, Paris, 1965)Google Scholar
  7. 7.
    K. Ma, L.A. Thomason, J. McLaurin, Scyllo-inositol, preclinical, and clinical data for Alzheimers disease. Adv. Pharmacol. 64, 177–212 (2012)CrossRefGoogle Scholar
  8. 8.
    L.E. Brammer Jr, T. Hudlicky, Inositol synthesis: concise preparation of L-chiro-inositol and muco-inositol from a common intermediate. Tetrahedron: Asymmetry 9, 2011–2014 (1998)CrossRefGoogle Scholar
  9. 9.
    M. Desjardins, L.E. Brammer Jr, T. Hudlicky, A practical multigram-scale synthesis of allo-inositol. Carbohydr. Res. 304, 39–42 (1997)CrossRefGoogle Scholar
  10. 10.
    M. Mandel, T. Hudlicky, L.D. Kwart, G.M. Whited, Unusual oxidation of 1-halo-1, 3-dienes with parmanganate. Expedient syntheses of (+)-D-chiro-3-inosose and (+)-D-chiro-inositol from chlorobenzene. J. Org. Chem. 58, 2331–2333 (1993)CrossRefGoogle Scholar
  11. 11.
    H.A.J. Carless, K. Busia, Synthesis of racemic 6-deoxy-6-fluoro-chiro-inositol 2, 3, 5-trisphosphate. Carbohydr. Res. 234, 207–215 (1992)CrossRefGoogle Scholar
  12. 12.
    H.A.J. Carless, S.S. Malik, Enantiospecific synthesis of C-methyl azidoinositols and aminocyclitols from toluene. Tetrahedron: Asymmetry 3, 1135–1138 (1992)CrossRefGoogle Scholar
  13. 13.
    H.A.J. Carless, O.Z. Oak, Total synthesis of (-)-laminitol (1D–4C-methyl-myo-inositol) via microbial oxidation of toluene. Tetrahedron Lett. 32, 1671–1674 (1991)CrossRefGoogle Scholar
  14. 14.
    T. Hudlicky, K.A. Abboud, J. Bolonick, R. Maurya, M.L. Stantonga, A.J. Thorpe, Concise syntheses of 1, 2-L-chiro-inositol conjugates and oligomers-a novel class of saccharide mimics with promising molecular properties. Chem. Commun. 15, 1717–1718 (1996)CrossRefGoogle Scholar
  15. 15.
    S. Freeman, T. Hudlicky, New oligomers of conduritol-F and muco-inositol. Synthesis and biological evaluation as glycosidase inhibitors. Bio. Med. Chem. Lett. 14, 1209–1212 (2004)CrossRefGoogle Scholar
  16. 16.
    B.J. Paul, J. Willis, T.A. Martinot, I. Ghiviriga, K.A. Abboud, T. Hudlicky, Synthesis, structure, and biological evaluation of novel N-and O-linked diinositols. J. Am. Chem. Soc. 124, 10416–10426 (2002)CrossRefGoogle Scholar
  17. 17.
    H.R. Henze, C.M. Blair, The number of structurally isomeric alcohols of the methanol series. J. Am. Chem. Soc. 53, 3042–3046 (1931)CrossRefGoogle Scholar
  18. 18.
    R. Otter, The number of trees. Ann. Math. 49, 583–599 (1948)CrossRefGoogle Scholar
  19. 19.
    F. Harary, R.W. Robinson, A.J. Schwenk, Twenty-step algorithm for determining the asymptotic number of trees of varous species. J. Austral. Math. Soc. 20, 483–503 (1975)CrossRefGoogle Scholar
  20. 20.
    R.W. Robinson, F. Harary, A.T. Balaban, The numbers of chiral and achiral alkanes and monosubstituded alkanes. Tetrahedron 32, 355–361 (1976)CrossRefGoogle Scholar
  21. 21.
    F. Harary, R.C. Read, The enumeration of tree-like polyhexes. Proc. Edinb. Math. Soc. 17, 1–13 (1970)CrossRefGoogle Scholar
  22. 22.
    I. Gutman, S.J. Cyvin, J. Brunvoll, Enumeration of the isomers of phenylenes. Monatsh. Chem. 125, 887–894 (1994)CrossRefGoogle Scholar
  23. 23.
    M.R.P.F.N. Costa, R.C.S. Dias, Prediction of mean square radius of gyration of tree-Like polymers by a general kinetic approach. Polymer 48, 1785–1801 (2007)CrossRefGoogle Scholar
  24. 24.
    R.C. Read, The enumeration of acyclic chemical compoundsl, in Chemical Applications of Graph Theory, ed. by A.T. Balaban (Academic Press, New York, 1976), pp. 24–61Google Scholar
  25. 25.
    C. Yeh, Isomer enumeration of alkenes and aliphatic cyclopropane derivatives. J. Chem. Inf. Comput. Sci. 36, 854–856 (1996)CrossRefGoogle Scholar
  26. 26.
    F. Harary, E.M. Palmer, Graphical Enumeration (Academic Press, New York, 1973)Google Scholar
  27. 27.
    L. Bytautas, D.J. Klein, Chemical combinatorics for alkane-isomer enumeration and more. J. Chem. Inf. Comput. Sci. 38, 1063–1078 (1998)CrossRefGoogle Scholar
  28. 28.
    J. Brunvoll, S.J. Cyvin, B.N. Cyvin, Enumeration of tree-like octagonal systems. J. Math. Chem. 21, 193–196 (1997)CrossRefGoogle Scholar
  29. 29.
    F. Bergeron, G. Labelle, P. Leroux, Combinatorial Species and Tree-Like Structures (Cambridge University Press, Cambridge, 1998)Google Scholar
  30. 30.
    A.T. Balaban, J.W. Kennedy, L. Quintas, The number of alkanes having \(n\) carbons and a longest chain of length \(d\): an application of a theorem of Pólya. J. Chem. Educ. 65, 304–313 (1988)CrossRefGoogle Scholar
  31. 31.
    M. Gordon, J.W. Kennedy, The counting and coding of trees of fixed diameter. SIAM J. Appl. Math. 28, 376–398 (1975)CrossRefGoogle Scholar
  32. 32.
    J.V. Knop, W.R. Müller, K. Szymanski, N. Trinajstić, Computer Generation of Certain Classes of Molecules (Association of Chemists and Technologists of Croatia, Zagreb, 1985)Google Scholar
  33. 33.
    Y. Ishida, Y. Kato, L. Zhao, H. Nagamochi, T. Akutsu, Branch-and-bound algorithms for enumerating treelike chemical graphs with given path frequency using detachment-cut. J. Chem. Inf. Model. 50, 934–946 (2010)CrossRefGoogle Scholar
  34. 34.
    K.C. Deng, J.G. Qian, F.J. Zhang, Enumerating tree-like polyphenyl isomers. J. Stat. Mech.: Theory Exp. P12018 (2012).
  35. 35.
    R. Friedberg, Dual trees and resummation theorems. J. Math. Phys. 16, 20–30 (1975)CrossRefGoogle Scholar
  36. 36.
    A. Miličević, N. Trinajstić, Combinatorial enumeration in chemistry, in Chemical Modelling: Applications and Theory, vol. 4, ed. by A. Hinchliffe (The Royal Society of Chemistry, Cambridge, 2006), pp. 405–469CrossRefGoogle Scholar
  37. 37.
    T. Hudlicky, K.A. Abboud, D.A. Entwistle, R. Fan, R. Maurya, A.J. Thorpe, J. Bolonick, B. Myers, Toluene-dioxygenase-mediated cis-dihydroxylation of aromatics in enantioselective synthesis. iterative glycoconjugate coupling strategy and combinatorial design for the synthesis of oligomers of nor-saccharides, inositols and pseudosugars with interesting molecular properties. Synthesis 7, 897–911 (1996)CrossRefGoogle Scholar
  38. 38.
    H. Dolhaine, H. Hönig, M. Van Almsick, Sample applications of an algorithm for the calculation of the number of isomers with more than one type of achiral substituent. MATCH Commun. Math. Comput. Chem. 39, 21–37 (1999)Google Scholar
  39. 39.
    H. Dolhaine, H. Hönig, Full isomer-tables of inositol-oligomers up to tetramers. MATCH Commun. Math. Comput. Chem. 46, 91–119 (2002)Google Scholar
  40. 40.
    H. Dolhaine, H. Hönig, On the theorical number of some inositol tetramers. MATCH Commun. Math. Comput. Chem. 46, 71–89 (2002)Google Scholar
  41. 41.
    C. Rücker, R. Gugisch, A. Kerber, Manual construction and mathematics-and computer-aided counting of stereoisomers. The example of oligoinositols. J. Chem. Inf. Comput. Sci. 44, 1654–1665 (2004)CrossRefGoogle Scholar
  42. 42.
    E.F. Beckenbach, Applied Combinatorial Mathematics (Wiley, New York, 1964)Google Scholar
  43. 43.
    G. Pólya, G. Szegö, Problems and Theorems in analysis (Springer, Berlin, 1972)CrossRefGoogle Scholar
  44. 44.
    F. Harary, Graph Theory (Addison-Wesley, Reading, MA, 1969)Google Scholar
  45. 45.
    A. Meir, J.W. Moon, On an asymptotic method in enumeration. J. Comb. Theory Ser. A. 51, 77–89 (1989)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.School of Mathematical SciencesXiamen UniversityXiamenPeople’s Republic of China

Personalised recommendations