Skip to main content
Log in

Level sets as progressing waves: an example for wake-free waves in every dimension

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The potential energy surface of a molecule can be decomposed into equipotential hypersurfaces of the level sets. It is a foliation. The main result is that the contours are the wave fronts of a certain hyperbolic partial differential equation, a wave equation. It is connected with the gradient lines, as well as with a corresponding eikonal equation. The energy seen as an additional coordinate plays the central role in this treatment. A solution of the wave equation can be a sharp front in the form of a delta distribution. We discuss a general Huygens’ principle: there is no wake of the wave solution in every dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. P.G. Mezey, Potential Energy Hypersurfaces (Elsevier, Amsterdam, 1987)

    Google Scholar 

  2. D. Heidrich, W. Kliesch, W. Quapp, Properties of Chemical Interesting Potential Energy Surfaces, Lecture Notes Chemistry 56 (Springer, Berlin, 1991)

    Book  Google Scholar 

  3. D.J. Wales, Energy Landscapes (Cambridge Univ. Press, Cambridge, 2003)

    Google Scholar 

  4. D. Heidrich (ed.), The Reaction Path in Chemistry: Current Approaches and Perspectives (Kluwer, Dordrecht, 1995)

    Google Scholar 

  5. W. Kutzelnigg, Einführung in die Theoretische Chemie, vol. 2 (VCH, Weinheim, 1994)

    Google Scholar 

  6. K. Fukui, J. Phys. Chem. 74, 416 (1970)

    Article  Google Scholar 

  7. A. Tachibana, K. Fukui, Theor. Chim. Acta 49, 321 (1978)

    Article  CAS  Google Scholar 

  8. A. Tachibana, K. Fukui, Theor. Chim. Acta 51(189), 275 (1979)

    Article  CAS  Google Scholar 

  9. W. Quapp, D. Heidrich, Theor. Chim. Acta 66, 245 (1984)

    Article  CAS  Google Scholar 

  10. W. Quapp, J. Theor. Comput. Chem. 2, 385 (2003)

    Article  CAS  Google Scholar 

  11. A. Candel, L. Colon, Foliations I (AMS, Providence, 2000)

    Google Scholar 

  12. R. Courant, D. Hilbert, Methods of Mathematical Physics Part 2 (by R. Courant), 2 ed, English ed., (Wiley: New York, 1953)

  13. J.M. Bofill, W. Quapp, M. Caballero, J. Chem. Theor. Comput. 8, 4856 (2012)

    Article  CAS  Google Scholar 

  14. F.G. Friedlander, The Wave Equation on a Curved Space-Time (Cambridge Univ. Press, London, 1975)

    Google Scholar 

  15. L. Bombelli, S. Sonego, J. Phys. A 27, 7177 (1994)

    Article  Google Scholar 

  16. P. Hillion, J. Math. Phys. 33, 2749 (1992)

    Article  Google Scholar 

  17. P. Hillion, Europhys. Lett. 33, 7 (1996)

    Article  CAS  Google Scholar 

  18. J.J. Duistermaat, Symplectic Geometry (Uni. Utrecht, preprint, 2004)

  19. J.M. Bofill, R. Crehuet, J. Chem. Phys. 122, 234105 (2005)

    Article  CAS  Google Scholar 

  20. T. Cecil, J. Qian, S. Osher, J. Comput. Phys. 196, 327–347 (2004)

    Article  Google Scholar 

  21. S. Osher, J.A. Sethian, J. Comput. Phys. 79, 12–14 (1988)

    Article  Google Scholar 

  22. J.A. Sethian, Level Set Methods and Fast Marching Methods (Cambridge Univ Press, Cambridge, 1999)

    Google Scholar 

  23. H.P.W. Gottlieb, J. Math. Phys. 29, 2434 (1988)

    Article  Google Scholar 

  24. A. Aguilar-Mogas, X. Giménez, J.M. Bofill, J. Chem. Phys. 128, 104102 (2008)

    Article  CAS  Google Scholar 

  25. I. Bucataru, M.A. Slawinski, Nonlin. Anal. Real World Appl. 6, 211 (2005)

    Article  Google Scholar 

  26. W.E. Couch, R.J. Torrence, Phys. Lett. A 117, 270 (1986)

    Article  Google Scholar 

  27. L. Bombelli, W.E. Couch, R.J. Torrence, J. Math. Phys. 32, 106 (1991)

    Article  Google Scholar 

  28. H. Soodak, M.S. Tiersten, Am. J. Phys. 61, 395 (1993)

    Article  Google Scholar 

  29. R.S. Ward, Class. Quantum Grav. 4, 775 (1987)

    Article  CAS  Google Scholar 

  30. D. Baskin, R. Mazzeo, Some Aspects of Linear Wave Equations 2012 (CMI/ETH Summer School 2008)

  31. S.L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics (AMS, 1963), Sect. 18.2

  32. Ch. Huygens, Traité de la Lumière (Pierre van der Aa: Leiden, 1690); in German: Abhandlung über das Licht (Harry Deutsch Verl.: Frankfurt, 1996)—Ostwalds Klassiker Bd.20

  33. J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equations (Oxford Univ. Press, London, 1923)

    Google Scholar 

  34. Y. Berest, Acta Appl. Math. 53, 125 (1998)

    Article  Google Scholar 

  35. P. Günther, Huygens’ Principle and Hyperbolic Equations (Academic Press, Boston, 1988)

    Google Scholar 

  36. P. Günther, Math. Intell. 13, 56 (1991)

    Article  Google Scholar 

  37. A.P. Veselov, Huygens’ principle, in Encyclopedia of Nonlinear Science, ed. by A. Scott (Routledge, London, 2004)

    Google Scholar 

Download references

Acknowledgments

Financial support from the Spanish Ministerio de Ciencia e Innovación, DGI project CTQ2011-22505 and, in part from the Generalitat de Catalunya projects 2009SGR-1472 is fully acknowledged. It is a pleasure to thank Prof. R. Schimming for a helpful discussion to Ref. [13]. We thank M. Belger for a careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Quapp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quapp, W., Bofill, J.M. Level sets as progressing waves: an example for wake-free waves in every dimension. J Math Chem 52, 654–664 (2014). https://doi.org/10.1007/s10910-013-0286-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-013-0286-9

Keywords

Mathematics Subject Classification

Navigation