Skip to main content
Log in

Application of the log-normal model for long term high affinity antibody/antigen interactions using Bio-Layer Interferometry

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

For more than 50 years, optical biosensors have been used to measure bio-molecular interactions. The most frequently applied binding model to fit biosensor data is the simple 1:1 binding model which requires the stabilization of the association phase to the equilibrium Req and the stabilization of the dissociation phase to the equilibrium zero. However, due to technical limitations many published biosensor measurements are finished before these requirements are fulfilled. In the present study, a long term binding interaction analysis with a monoclonal antibody, namely IgG 2F5 and UG37 a specific antigen with a promising biosensor platform, the Bio-Layer Interferometry, was performed. Data fitting with the simple 1:1 binding model to the association phase was inappropriate and the fitted parameters varied with the concentration and time, which contradicts the theory of the simple 1:1 binding model. Furthermore, extrapolation of the fits with individual times spans compared to 100 % of the obtained data systematically underestimated the actual observed binding curve. Interestingly, an alternative model based on the cumulative distribution function of the log-normal probability distribution remedied the aforementioned problems allowing \(\hbox {K}_\mathrm{L}\) (which is the analog to the affinity constant \(\hbox {K}_\mathrm{D}\)) to be estimated. We further demonstrate that this model fits the biosensor data far better and is essentially less affected by the stabilization of the association phase to the equilibrium (Req) and the stabilization of the dissociation phase to the equilibrium zero. Finally, extrapolation with the log-normal model predicts the actually observed binding curve in a proper manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Giannetti, B. Koch, M. Browner, J. Med. Chem. 51, 574 (2008)

    Article  CAS  Google Scholar 

  2. R.L. Rich, G.A. Papalia, P.J. Flynn, J. Furneisen, J. Quinn, J.S. Klein, P.S. Katsamba, M.B. Waddell, M. Scott, J. Thompson, J. Berlier, S. Corry, M. Baltzinger, G. Zeder-Lutz, A. Schoenemann, A. Clabbers, S. Wieckowski, M.M. Murphy, P. Page, T.E. Ryan, J. Duffner, T. Ganguly, J. Corbin, S. Gautam, G. Anderluh, A. Bavdek, D. Reichmann, S.P. Yadav, E. Hommema, E. Pol, A. Drake, S. Klakamp, T. Chapman, D. Kernaghan, K. Miller, J. Schuman, K. Lindquist, K. Herlihy, M.B. Murphy, R. Bohnsack, B. Andrien, P. Brandani, D. Terwey, R. Millican, R.J. Darling, L. Wang, Q. Carter, J. Dotzlaf, J. Lopez-Sagaseta, I. Campbell, P. Torreri, S. Hoos, P. England, Y. Liu, Y. Abdiche, D. Malashock, A. Pinkerton, M. Wong, E. Lafer, C. Hinck, K. Thompson, C.D. Primo, A. Joyce, J. Brooks, F. Torta, A.B. Bagge Hagel, J. Krarup, J. Pass, M. Ferreira, S. Shikov, M. Mikolajczyk, Y. Abe, G. Barbato, A.M. Giannetti, G. Krishnamoorthy, B. Beusink, D. Satpaev, T. Tsang, E. Fang, J. Partridge, S. Brohawn, J. Horn, O. Pritsch, G. Obal, S. Nilapwar, B. Busby, G. Gutierrez-Sanchez, R.D. Gupta, S. Canepa, K. Witte, Z. Nikolovska-Coleska, Y.H. Cho, R. D’Agata, K. Schlick, R. Calvert, E.M. Munoz, M.J. Hernaiz, T. Bravman, M. Dines, M.H. Yang, D.G. Myszka, Anal. Biochem. 386, 194 (2009)

    Article  CAS  Google Scholar 

  3. D. Myszka, X. He, M. Dembo, T. Morton, B. Goldstein, Biophys. J. 75, 583 (1998)

    Article  CAS  Google Scholar 

  4. S.P. Yadav, S. Bergqvist, M.L. Doyle, T.A. Neubert, A.P. Yamniuk, J. Biomol. Tech. 23, 94 (2012)

    Article  Google Scholar 

  5. A. Onell, K. Andersson, J. Mol. Recognit. 18, 307 (2005)

    Article  CAS  Google Scholar 

  6. Y.N. Abdiche, Biosensors 302, 81 (2010)

  7. D.G. Myszka, J. Mol. Recognit. 12, 279 (1999)

    Article  CAS  Google Scholar 

  8. D.G. Myszka, M.D. Jonsen, B.J. Graves, Anal. Biochem. 265, 326 (1998)

    Article  CAS  Google Scholar 

  9. R. Barbour, M.P. Bova, Bioanalysis 4, 619 (2012)

    Article  CAS  Google Scholar 

  10. I. Navratilova, E. Eisenstien, D.G. Myszka, Anal. Biochem. 344, 295 (2005)

    Article  CAS  Google Scholar 

  11. B. Ma, M. Alam, E. Go, X. Lu, H. Desaire, G. Tomaras, C. Bowman, L. Sutherland, R. Scearce, S. Santra, N. Letvin, T. Kepler, H. Liao, B. Haynes, Plos Pathogens 7, 1 (2011)

    Article  CAS  Google Scholar 

  12. T. Do, F. Ho, B. Heidecker, K. Witte, L. Chang, L. Lerner, Protein Expr. Purif. 60, 150 (2008)

    Article  CAS  Google Scholar 

  13. D.J. O’Shannessy, M. Brigham-Burke, K.K. Soneson, P. Hensley, I. Brooks, Anal. Biochem. 212, 457 (1993)

    Article  Google Scholar 

  14. J. Tintner, M. Kühleitner, E. Binner, N. Brunner, E. Smidt, Biodegradation 23, 407 (2012)

    Article  CAS  Google Scholar 

  15. A. Holmberg, A. Blomstergren, O. Nord, M. Lukacs, J. Lundeberg, M. Uhlen, Electrophoresis 26, 501 (2005)

    Article  CAS  Google Scholar 

  16. Y.N. Abdiche, D.G. Myszka, Anal. Biochem. 328, 233 (2004)

    Article  CAS  Google Scholar 

  17. J.R. Mascola, M.K. Louder, T.C. VanCott, C.V. Sapan, J.S. Lambert, L.R. Muenz, B. Bunow, D.L. Birx, M.L. Robb, J. Virol. 71, 7198 (1997)

    CAS  Google Scholar 

  18. A. Dey, K. David, P. Klasse, J. Moore, Virology 360, 199 (2007)

    Article  CAS  Google Scholar 

  19. Y. Abdiche, D. Malashock, A. Pinkerton, J. Pons, Anal. Biochem. 377, 209 (2008)

    Article  CAS  Google Scholar 

  20. J. Wallner, G. Lhota, D. Jeschek, A. Mader, K. Vorauer-Uhl, J. Pharm. Biomed. Anal. 72, 150 (2013)

    Article  CAS  Google Scholar 

  21. P.S. Katsamba, I. Navratilova, M. Calderon-Cacia, L. Fan, K. Thornton, M. Zhu, T.V. Bos, C. Forte, D. Friend, I. Laird-Offringa, G. Tavares, J. Whatley, E. Shi, A. Widom, K.C. Lindquist, S. Klakamp, A. Drake, D. Bohmann, M. Roell, L. Rose, J. Dorocke, B. Roth, B. Luginbühl, D.G. Myszka, Anal. Biochem. 352, 208 (2006)

    Article  CAS  Google Scholar 

  22. D.J. O’Shannessy, M. Brigham-Burke, K.K. Soneson, P. Hensley, I. Brooks, Methods Enzymol. 240, 323 (1994)

    Google Scholar 

Download references

Acknowledgments

The authors thank Polymun Scientific, Immunbiologische Forschung GmbH (Klosterneuburg, Austria), for kindly providing the recombinant human monoclonal antibody (IgG2F5) and the specific antigen UG37 in pharmaceutical grade.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Wallner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallner, J., Kühleitner, M., Brunner, N. et al. Application of the log-normal model for long term high affinity antibody/antigen interactions using Bio-Layer Interferometry. J Math Chem 52, 575–587 (2014). https://doi.org/10.1007/s10910-013-0278-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-013-0278-9

Keywords

Navigation