Skip to main content
Log in

The Homfly polynomial of double crossover links

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Motivated by double crossover DNA polyhedra (He et al. in Nature 452:198, 2008; Lin et al. in Biochemistry 48:1663, 2009; Zhang et al. in J Am Chem Soc 131:1413, 2009; Zhang et al. in Proc Natl Acad Sci USA 105:10665, 2008; He et al. in Angew Chem Int Ed 49:748, )2010, in this paper, we construct a new type of link, called the double crossover link, formed by utilizing the “\(n\)-point star” to cover each vertex of a connected graph \(G\). The double crossover link can be used to characterize the topological properties of double crossover DNA polyhedra. We show that the Homfly polynomial of the double crossover link can be obtained from the chain polynomial of the truncated graph of \(G\) with two distinct labels. As an application, by using computer algebra (Maple) techniques, the Homfly polynomial of a double crossover tetrahedral link is obtained. Our result may be used to characterize and analyze the topological structure of DNA polyhedra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y. He, T. Ye, M. Su, C. Zhang, A.E. Ribbe, W. Jiang, C. Mao, Nature 452, 198 (2008)

    Article  CAS  Google Scholar 

  2. C. Lin, Y. Liu, H. Yan, Biochemistry 48, 1663 (2009)

    Article  CAS  Google Scholar 

  3. C. Zhang, S.H. Ko, M. Su, Y. Leng, A.E. Ribbe, W. Jiang, C. Mao, J. Am. Chem. Soc. 131, 1413 (2009)

    Article  CAS  Google Scholar 

  4. C. Zhang, M. Su, Y. He, X. Zhao, P. Fang, A.E. Ribbe, W. Jiang, C. Mao, Proc. Natl. Acad. Sci. USA 105, 10665 (2008)

    Article  CAS  Google Scholar 

  5. Y. He, M. Su, P. Fang, C. Zhang, A.E. Ribbe, W. Jiang, C. Mao, Angew. Chem. Int. Ed. 49, 748 (2010)

    Article  CAS  Google Scholar 

  6. J.P. Sauvage, C.D. Buckecker, Molecular Catenanes, Rotaxanes and Knots (Wiley, New York, 1999)

    Book  Google Scholar 

  7. C.A. Schalley, Angew. Chem. Int. Ed. 43, 4399 (2004)

    Article  CAS  Google Scholar 

  8. J.S. Siegel, Science 304, 1256 (2004)

    Article  CAS  Google Scholar 

  9. O. Lukin, F. Vögtle, Angew. Chem. Int. Ed. 44, 1456 (2005)

    Article  CAS  Google Scholar 

  10. B.C. Dietrich, B.X. Colasson, J.P. Sauvage, Molecular Knots: In Templates in Chemistry Ii (Springer, Berlin, 2005)

    Google Scholar 

  11. C.D. Pentecost, K.S. Chichak, A.J. Peters, G.W.V. Cave, S.J. Cantrill et al., Angew. Chem. Int. Ed. 46, 218 (2007)

    Article  CAS  Google Scholar 

  12. P. Freyd, D. Yetter, J. Hoste, W.B.R. Lickorish, K. Millett et al., Bull. Am. Math. Soc. (N.S.) 12, 239 (1985)

    Article  Google Scholar 

  13. J.H. Przytycki, P. Traczyk, Kobe J. Math. 4, 115 (1987)

    Google Scholar 

  14. X. Jin, F. Zhang, MATCH Commun. Math. Comput. Chem. 63, 657 (2010)

    Google Scholar 

  15. S.Y. Liu, H. Zhang, W.Y. Qiu, MATCH Commun. Math. Comput. Chem. 67, 65 (2012)

    CAS  Google Scholar 

  16. S.Y. Liu, X.S. Cheng, H. Zhang, W.Y. Qiu, J. Math. Chem. 48, 439 (2010)

    Article  CAS  Google Scholar 

  17. X. Jin, F. Zhang, Proc. Am. Math. Soc. 140, 1459 (2012)

    Article  Google Scholar 

  18. G. Hu, W.Y. Qiu, A. Ceulemans, PLoS One 6, e26308 (2011)

    Article  CAS  Google Scholar 

  19. X.S. Cheng, X. Jin, PLoS One 7, e48968 (2012)

    Article  CAS  Google Scholar 

  20. P.G. Cromwell, Knots and Links (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  21. L. Traldi, Proc. Am. Math. Soc. 106, 279 (1989)

    Article  Google Scholar 

  22. L.H. Kauffman, Discrete Appl. Math. 25, 105 (1989)

    Article  Google Scholar 

  23. R.C. Read, E.G. Whitehead, Discrete Math. 204, 337 (1999)

    Article  Google Scholar 

  24. R.C. Read, E.G. Whitehead Jr, Discrete Math 243, 267 (2002)

    Article  Google Scholar 

  25. X. Jin, F. Zhang, Advances in Appl. Math. 34, 47 (2005)

    Article  Google Scholar 

  26. X. Jin, F. Zhang, J. Stat. Mech. P07011. (2011)

  27. W.T. Tutte, Can. J. Math. 6, 80 (1954)

    Article  Google Scholar 

  28. F. Jaeger, Proc. Am. Math. Soc. 103, 647 (1988)

    Article  Google Scholar 

Download references

Acknowledgments

X.-S. Cheng was supported by Grants from the National Natural Science Foundation of China (No. 11101174), Natural Science Foundation of Guangdong Province of China (No. S2011040003984) and Foundation for Distinguished Young Talents in Higher Education of Guangdong, China (No. LYM11120). Y. Lei and W. Yang was supported by Grants from the National Natural Science Foundation of China (No. 11271307), Natural Science Foundation of Fujian Province of China (No. 2012J01019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Sheng Cheng.

Appendix

Appendix

Let \(GG\) be a graph, \(MM\) the labeled edge matrix of \(GG,\, ww\) algebraic number, so the program of the labled graph \(GG\) is written as follows, and the content in “[ ]” explains the program.

  • ChainPolynomial := proc (\(GG\)::GRAPHLN, \(MM\)::Matrix, \(ww\)::algebraic)    [make a function in order transfer the datas]

  • local \(G,\, chp,\, AAM,\, m\);

  • global \(w\);

  • \(G\):= ‘ if ‘ (op(2, \(GG\)) = ’unweighted’, MakeWeighted(GG), \(GG\));    [if \(GG\) is an unweighted graph, then can let \(GG\) be weighted graph denoted by \(G\)]

  • \(AAM\) := \(MM\);

  • \(w\) := \(ww\);

  • \(m\) := nops(op(3, \(G\)));    [\(m\) equals the vertex number of the graph \(G\)]

  • \(chp\) := proc (\(G\), AAM)    [make a function in order to compulate the chain polynomial of \(G\)]

  • local \(i, j, k, ii, jj, e, ee, E, LL, CCM, DDM, n, x, y, z, GDel, GCon, chpp, GGC, GGD\);

  • option remember;[record the program]

  • \(GGC\) := \(G\);

  • \(GGD\) := \(G\);

  • \(E\) := Edges(\(G\), weights);    [\(E\) is a list of the weighted edges]

  • if \(nops(E) = 0\) then return 1 end if;[if \(G\) is a null graph, return 1]

  • \(e {:=} E[1]\);    [\(e\) denotes the first edge of \(E\)]

  • \(ee {:=} e[1]\);    [\(ee\) are related vertics of \(e\)]

  • \(ii {:=} op(1, sort(ee))\);    [\(ii\) is the first vertex of \(e\)]

  • \(jj {:=} op(2, sort(ee))\);    [\(jj\) is the first vertex of \(e\)]

  • [the following is the recursive of chain polynomial,where parallel edges are deleted and contracted at a time]

  • \(LL {:=} AAM[ii, jj];\)

  • \(n {:=} nops(LL);\)

  • \(x {:=} 1\);

  • for \(i\) to \(n\) do

  • \(x {:=} x*(LL[i]-1)\)

  • end do;

  • \(y {:=} 0\);

  • for \(k\) to \(n\) do \(z {:=} 1;\)

  • for \(i\) to \(k-1\) do

  • \(z {:=} z*(LL[i]-w)\)

  • end do;

  • for \(i\) from \(k+1\) to \(n\) do

  • \( z {:=} z*(LL[i]-1)\)

  • end do;

  • \(y {:=} y+z\) end do;

  • \( GCon\) := Contract(\(GGC,\, ee\), multi = true);

  • \(GDel\) := DeleteEdge(\(GGD,\, ee\));

  • \(DDM\) := matrix(\(m,\, m\));

  • \(CCM\):= matrix(\(m,\, m\));

  • for \(i\) to \(m\) do for \(j\) to \(m\) do

  • if \(i = ii\) and \(j = jj\) then

  • \(DDM[i, j] {:=} [~]\)

  • elif \(i = jj\) and \(j = ii\)

  • then \(DDM[j, i] {:=} [~]\)

  • else \(DDM[i, j] {:=} AAM[i, j]\)

  • end if

  • end do

  • end do;

  • for \(i\) to \(m\) do

  • for \(j\) to \(m\) do

  • if \(i\ne ii\) and \(i\ne jj\) and \(j\ne ii\) and \(j\ne jj\)

  • then \(CCM[i, j] {:=} AAM[i, j]\)

  • elif \(i = ii\) and \(j\ne ii\) and\(j\ne jj\)

  • then \(CCM[i, j] {:=} [op(AAM[ii, j]), op(AAM[jj, j])]\)

  • elif \(j = ii\) and \(i\ne ii\) and \(j\ne jj\)

  • then \(CCM[i, j] {:=} [op(AAM[i, ii]), op(AAM[i, jj])]\)

  • else \(CCM[i, j] {:=} [~]\)

  • end if

  • end do

  • end do;

  • \(chpp\) := \(x*\)procname(\(GDel, DDM\))+\(y*\)procname(\(GCon, CCM\));

  • simplify(chpp)

  • end proc;

  • chp(\(G,\, AAM\))

  • end proc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, XS., Lei, Y. & Yang, W. The Homfly polynomial of double crossover links. J Math Chem 52, 23–41 (2014). https://doi.org/10.1007/s10910-013-0241-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-013-0241-9

Keywords

Navigation