Skip to main content
Log in

A comparison of efficiency and accuracy of two-electron integrals calculation between two methods in multi-configuration time-dependent hartree fock frame

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

An approach to the evaluation of the two-electron repulsion integrals exactly in sine finite basis representation is proposed. The two-electron coulomb potential integrals are calculated respectively in sine finite basis representation by using two-fold Gaussian quadrature rules and in discrete variable representation by using the natural potential expansion of coulomb potential \(r_{12} \). The efficiency and accuracy of two methods to calculate the two-electron repulsion integrals are compared. Some demonstrative calculations indicate that both the two ways are effective methods to do two-electron integrals calculations in the multi-configuration time-dependent hartree fock (MCTDHF) frame. By using the method to calculate the two-electron integrals in sine FBR, the working equations of MCTDHF are propagated in imaginary time. The ground state energy of helium atom obtained in the imaginary propagation is close to the Full Configuration interaction energy calculated by Molpro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. E. Runge, E.K.U. Gross, Phy. Rev. Lett. 52, 997 (1984)

    Article  CAS  Google Scholar 

  2. F. Calvayrac, P.G. Reinhard, E. Suraud, C.A. Ullrich, Phys. Rep. 337, 493 (2000)

    Article  CAS  Google Scholar 

  3. K.C. Kulander, Phys. Rev. A 36, 2726 (1987)

    Article  CAS  Google Scholar 

  4. M.S. Pindzola, P. Gavras, T.W. Gorczyca, Phys. Rev. A 51, 3999 (1995)

    Article  CAS  Google Scholar 

  5. T. Klamroth, Phys. Rev. B 68, 245421 (2003)

    Article  Google Scholar 

  6. J. Zanghellini, M. Kitzler, C. Fabian, T. Brabec, A. Scrinzi, Laser Phys. 13, 1064 (2003)

    Google Scholar 

  7. J. Zanghellini, M. Kitzler, T. Brabec, A. Scrnzi, J. Phys. B At. Mol. Opt. Phys. 37, 763 (2004)

    Article  CAS  Google Scholar 

  8. J. Caillat, J. Zhanghellini, M. Kitzler, O. Koch, W. Kreuzer, A. Scrinzi, Phys. Rev. A 71, 012712 (2005)

    Article  Google Scholar 

  9. T. Kato, H. Kono, Chem. Phys. Lett. 392, 533 (2004)

    Article  CAS  Google Scholar 

  10. T. Kato, K. Yamanouchi, J. Chem. Phys. 131, 164118 (2009)

    Article  Google Scholar 

  11. M. Nest, T. Klamroth, P. Saalfrank, J. Chem. Phys. 122, 124102 (2005)

    Article  CAS  Google Scholar 

  12. M. Nest, T. Klamroth, Phys. Rev. A 72, 012710 (2005)

    Article  Google Scholar 

  13. M. Nest, J. Theor. Comput. Chem 6, 563 (2007)

    Article  CAS  Google Scholar 

  14. M. Nest, J. Chem. Phys. 472, 171 (2009)

    CAS  Google Scholar 

  15. M. Nest, R. Padmanaban, P. Saalfrank, J. Chem. Phys. 126, 124106 (2007)

    Article  Google Scholar 

  16. H.D. Meyer, U. Manthe, L.S. Cederbaum, Chem. Phys. Lett. 165, 73 (1990)

    Article  CAS  Google Scholar 

  17. M.H. Beck, A. Jackle, G.A. Worth, H.D. Meyer, Phys. Rep. 324, 1 (2000)

    Article  CAS  Google Scholar 

  18. M. Nest, H.D. Meyer, J. Chem. Phys. 119, 24 (2003)

    Article  CAS  Google Scholar 

  19. H.D. Meyer, G.A. Worth, Theor. Chem. Acc. 109, 251 (2003)

    Article  CAS  Google Scholar 

  20. W. Li, W. Xu, Mol. Phys. 111, 119 (2013)

    Google Scholar 

  21. A.Szabo, N.S. Ostlund, Modern Quantum Chemistry, Mineola, New York

  22. H.J. Werner, P.J. Konwles, R.D. Amos, A. Berning, D.L. Cooper, M.J.O. Deegan, A.J. Dobbyn, F. Eckert, C. Hampel, T. Leininger, R. Lindh, A.W. Lloyd, 245 W. Meyer, M.E. Mura, A. Nickla, P. Palmieri, K. Peterson, R. Pitzer, P. Pulay, G. Rauhut, M. Schfltz, H. Stoll, A.J. Stone, T. Thoresteinsson, MOLPRO 2010, a package of ab initio programs, see http://www.molpro.net.

Download references

Acknowledgments

This work was supported by the NSF of China (NSFC) (Grant No. 10974198).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenliang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Han, K. A comparison of efficiency and accuracy of two-electron integrals calculation between two methods in multi-configuration time-dependent hartree fock frame. J Math Chem 51, 1293–1299 (2013). https://doi.org/10.1007/s10910-013-0145-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-013-0145-8

Keywords

Navigation