Journal of Mathematical Chemistry

, Volume 50, Issue 6, pp 1514–1520 | Cite as

Star graph representations of chiral objects in graph theory

Original Paper


Planar chirality of objects is a problem with important applications in many fields of natural sciences, especially in chemistry and pharmacology. The analysis of chirality properties can be studied using n-polyominoes and planar graphs. In this paper we show that graph representations of chiral objects can be star-graphs.


Chirality Jordan curve Graph representations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Harary F., Mezey P.G.: Chiral and Achiral Square-cell Configurations; The Degree of Chirality, New Develoments in Molecular Chirality, pp. 241–256. Kluwer Academic Publisher, Dordrecht (1991)Google Scholar
  3. 3.
    Harary F., Robinson R.W.: The number of achiral trees. J. Reine Angew. Math. 278, 322–332 (1975)Google Scholar
  4. 4.
    Mezey P. G.: Similarity analysis in two and three dimensions using lattice animals and polycubes. J. Math. Chem. 11, 27–45 (1992)CrossRefGoogle Scholar
  5. 5.
    Mezey P.G.: Chirality measure and graph representations. Comput. Math. Appl. 34(11), 105–112 (1997)CrossRefGoogle Scholar
  6. 6.
    Mezey P.G.: Shape in Chemistry An Introduction to Molecular Shape and Topology. VCH Publishers, New York (1993)Google Scholar
  7. 7.
    Kitaigorodski A.I.: Organic Chemical Crystallography, Chapter 4, pp. 75–100. Consultants Bureau, New York (1961)Google Scholar
  8. 8.
    Mislow K., Siegel J.: Stereoisomerism and local chirality. J. Am. Chem. Soc. 106, 3319–3328 (1984)CrossRefGoogle Scholar
  9. 9.
    Rassat A.: Chimie organique physique—Un critère de classement des systèmes chiraux de points à partir de la distance au sens de Haussdorf. Compt. Rend. Acad. Sci. (Paris) II 299, 53–55 (1984)Google Scholar
  10. 10.
    Gilat G.: On quantifying chirality—obstacles and problems towards unification. J. Math. Chem. 15, 197–205 (1994)CrossRefGoogle Scholar
  11. 11.
    Gilat G.: coefficient—a measure of the amount of structural chirality. J. Phys. A Math. Gen. 22, L545–L550 (1989)CrossRefGoogle Scholar
  12. 12.
    Gilat G.: On the quantification of asymetry in nature. Found. Phys. Lett. 3, 189–196 (1990)CrossRefGoogle Scholar
  13. 13.
    Avnir D., Meyer A.Y.: Quantifying the degree of molecular shape distortion. A chirality measure. J. Mol. Struct. (Theochem) 226, 211–222 (1991)CrossRefGoogle Scholar
  14. 14.
    Harary F., Lewinter M.: Spanning subgraphs of a hypercube. Int. J. Comput. Math. 25(1), 1–4 (1988)CrossRefGoogle Scholar
  15. 15.
    Cahn R.S., Ingold C.K., Prelog V.: Specification of molecular chirality. Angew. Chem. Int. Ed. Engl. 5, 385–415 (1966)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Institute of mathematicsBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations