Journal of Mathematical Chemistry

, Volume 51, Issue 5, pp 1249–1257 | Cite as

Computer modeling of synthesis of calcium hydroxyapatite (CHAp)

  • Mažvydas Mackevičius
  • Feliksas Ivanauskas
  • Aivaras Kareiva
  • Irma Bogdanovičienė
Original Paper


In our previous papers (Mackevičius et al. in Cent Eur J Chem 10(2):380–385, 2012, J Math Chem 50(8):2291–2302, 2012), we presented a method for estimation of the diffusion and reaction rates of synthesis at high temperatures using limited information, such as synthesis time and dimensions of reactants, from real laboratory experiments. The method was limited to the two-reactant case. In order to extend the method to the three-reactant case, the form and distribution of particles of three reactants must satisfy requirements of periodicity and symmetry. In our model, we achieve this by taking rhombic particles and a triangular synthesis space. Solving in the latter an inverse modeling problem, we obtain explicit formulas for the diffusion coefficient and reaction rate as functions of temperature by calculating the activation energies and other parameters of CHAp synthesis.


Sol–gel processing Three-reactant model Diffusion coefficient Reaction rate 



Research presented in the introduction section was funded by a grant (No. TAP-LLT-07/2012) from the Research Council of Lithuania.


  1. 1.
    M. Mackevičius, F. Ivanauskas, A. Kareiva, Mathematical approach to investigation of synthesis processes at high temperatures. Cent. Eur. J. Chem. 10(2), 380–385 (2012)CrossRefGoogle Scholar
  2. 2.
    M. Mackevičius, F. Ivanauskas, A. Kareiva, D. Jasaitis, A closer look at the computer modeling and sintering optimization in the preparation of YAG. J. Math. Chem. 50(8), 2291–2302 (2012)CrossRefGoogle Scholar
  3. 3.
    B.N. Arzamasov, V.N. Simonov, Circulation method for depositing diffusion coatings. Met. Sci. Heat Treat. 52(9–10), 403–407 (2011)CrossRefGoogle Scholar
  4. 4.
    P. Budrugeac, An iterative model-free method to determine the activation energy of non-isothermal heterogeneous processes. Thermochim. Acta 511(1–2), 8–16 (2010)CrossRefGoogle Scholar
  5. 5.
    F. Ivanauskas, A. Kareiva, B. Lapcun, On the modeling of solid state reactions. Synthesis YAG. J. Math. Chem. 37(4), 365–476 (2005)CrossRefGoogle Scholar
  6. 6.
    H.H. Mohamed, C.B. Mendive, R. Dillert, D.W. Bahnemann, Kinetic and mechanistic investigations of multielectron transfer reactions induced by stored electrons in TiO2 nanoparticles: a stopped flow study. J. Phys. Chem. A 115(11), 2139–2147 (2011)CrossRefGoogle Scholar
  7. 7.
    B. Adnadevic, B. Jankovic, D.M. Minic, Kinetics of the apparent isothermal and non-isothermal crystallization of the alpha-Fe phase within the amorphous Fe81B13Si4C2 alloy. J. Phys. Chem. Solids 71(7), 927–934 (2010)CrossRefGoogle Scholar
  8. 8.
    H. Belhouchet, M. Hamidouche, N. Bouaouadja, V. Garnier, G. Fantozzi, Kinetics of mullite formation in zircon and boehmite mixture. Ann. Chim. Sci. Mater. 35(1), 17–25 (2010)CrossRefGoogle Scholar
  9. 9.
    C. Chen, W.L. Gong, W. Lutze, I.L. Pegg, Kinetics of fly ash geopolymerization. J. Mater. Sci. 46(9), 3073–3083 (2011)CrossRefGoogle Scholar
  10. 10.
    K. Muraleedharan, V.M.A. Mujeeb, M.H. Aneesh, T. Gangadevi, M.P. Kannan, Effect of pre-treatments on isothermal decomposition kinetics of potassium metaperiodate. Thermochim. Acta 510(1–2), 160–167 (2010)CrossRefGoogle Scholar
  11. 11.
    F. Xia, J. Brugger, A. Pring, Arsenian pyrite formation: solid-state diffusion or dissolution-reprecipitation replacement? In: Smart Science for Exploration and Mining, Proceedingsof the 10th Biennial SGA Meeting of The Society for Geology Applied to Mineral Deposits vol. 2 (2010), pp. 700–702Google Scholar
  12. 12.
    C.J. Deng, J.M. Cai, R.H. Liu, Kinetic analysis of solid-state reactions: evaluation of approximations to temperature integral and their applications. Solid State Sci. 11(8), 1375–1379 (2009)CrossRefGoogle Scholar
  13. 13.
    A. Perejon, P.E. Sanchez-Jimenez, J.M. Criado, L.A. Perez-Maqueda, Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J. Phys. Chem. B 115(8), 1780–1791 (2011)CrossRefGoogle Scholar
  14. 14.
    W. Preis, Modelling of surface exchange reactions and diffusion in composites and polycrystalline materials. Montash. Chem. 140(9), 1059–1068 (2009)CrossRefGoogle Scholar
  15. 15.
    M. Vallet-Regi, J. Chem. Soc. Dalton Trans. 2, 97 (2001)CrossRefGoogle Scholar
  16. 16.
    E. Landi, G. Celotti, G. Logroscino, A. Tampieri, J. Eur. Ceram. Soc. 23, 2931 (2003)CrossRefGoogle Scholar
  17. 17.
    M. Shirkhanzadeh, J. Mater. Sci. Mater. Med. 16, 37 (2005)CrossRefGoogle Scholar
  18. 18.
    C.K. Chua, K.F. Leong, K.H. Tan, F.E. Wiria, C.M. Chean, J. Mater. Sci. Mater. Med. 15, 1113 (2004)CrossRefGoogle Scholar
  19. 19.
    L. Gan, J. Wang, A. Tache, N. Valiquette, D. Deporter, R. Pilliar, Biomaterials 25, 5313 (2004)CrossRefGoogle Scholar
  20. 20.
    S.B. Kim, Y.J. Kim, T.L. Yoon, S.A. Park, I.H. Cho, E.J. Kim, I.A. Kim, J.-W. Shin, Biomaterials 25, 5715 (2004)CrossRefGoogle Scholar
  21. 21.
    A.C. Tas, F. Aldinger, J. Mater. Sci. Mater. Med. 16, 167 (2005)CrossRefGoogle Scholar
  22. 22.
    S.R. Ramanan, R. Venkatesh, Mater. Lett. 58, 3320 (2004)CrossRefGoogle Scholar
  23. 23.
    H. Zreiqat, R. Roest, S. Valenzuela, A. Milev, B. Ben-Nissan, Key Eng. Mater. 284–286, 541 (2005)CrossRefGoogle Scholar
  24. 24.
    H.K. Varma, S.S. Babu, Ceram. Int. 31, 109 (2005)CrossRefGoogle Scholar
  25. 25.
    F. Miyaji, Y. Kono, Y. Suyama, Mater. Res. Bull. 40, 209 (2005)CrossRefGoogle Scholar
  26. 26.
    I. Bogdanoviciene, A. Beganskiene, K. Tonsuaadu, J. Glaser, H.-J. Meyer, A. Kareiva, Mater. Res. Bull. 41, 1754 (2006)CrossRefGoogle Scholar
  27. 27.
    I. Bogdanoviciene, K. Tonsuaadu, A. Kareiva, Polish J. Chem. 83, 47 (2009)Google Scholar
  28. 28.
    I. Bogdanoviciene, A. Beganskiene, A. Kareiva, R. Juskenas, A. Selskis, R. Ramanauskas, K. Tonsuaadu, V. Mikli, Chemija 21, 98 (2010)Google Scholar
  29. 29.
    I. Bogdanoviciene, K. Tonsuaadu, V. Mikli, I. Grigoraviciute-Puroniene, A. Beganskiene, A. Kareiva, Cent. Eur. J. Chem. 8, 1323 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mažvydas Mackevičius
    • 1
  • Feliksas Ivanauskas
    • 2
  • Aivaras Kareiva
    • 3
  • Irma Bogdanovičienė
    • 3
  1. 1.Institute of Mathematics and InformaticsVilnius UniversityVilniusLithuania
  2. 2.Department of Mathematics and InformaticsVilnius UniversityVilniusLithuania
  3. 3.Department of ChemistryVilnius UniversityVilniusLithuania

Personalised recommendations