Journal of Mathematical Chemistry

, Volume 51, Issue 2, pp 465–491 | Cite as

Effective GA approach for a direct evaluation of reaction kinetic within EPDM accelerated sulphur crosslinking

  • G. Milani
Original Paper


A direct genetic algorithm (GA) approach with kinetic base, to provide effective numerical estimates of vulcanization level for EPDM cross-linked with accelerated sulphur is presented. The model requires a preliminary characterization of rubber through standard rheometer tests. A recently presented kinetic exponential model is used as starting point to develop the algorithm proposed. In such a model, three kinetic constants have to be determined by means of a non-linear least-squares curve fitting. The approach proposed circumvents a sometimes inefficient and not convergent non-linear data fitting, disregarding at a first attempt reversion and finding the local minimum of a suitable two-variable error function, to have an estimate of the first two kinetic constants. A comparison between present GA approach and traditional gradient based algorithms is discussed. The last constant, representing reversion is again evaluated through a minimization performed on a single variable error function. The applicability of the approach is immediate and makes the model extremely appealing when fast and reliable estimates of crosslinking density of cured EPDM are required. To show the capabilities of the approach proposed, a comprehensive comparison with both available experimental data and results obtained numerically with a least square exponential model for a real compound at different temperatures is provided.


Simplified kinetic model Genetic algorithm (GA) Sulphur vulcanization Reversion Rheometer curve fitting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Likozar B.: Kinetic modeling of the peroxide cross-linking of polymer/monomer blends: from a theoretical model framework to its application for a complex polymer/monomer dispersion system. React. Funct. Polym. 71(1), 11–22 (2011)CrossRefGoogle Scholar
  2. 2.
    Likozar B., Krajnc M.: Simulation of chemical kinetics of elastomer crosslinking by organic peroxides. Polym. Eng. Sci. 49(1), 60–72 (2009)CrossRefGoogle Scholar
  3. 3.
    McCaslin E.A.: Computer modeling of rubber vulcanization. Rubber World 237(3), 38–41 (2007)Google Scholar
  4. 4.
    Bacci D., Marchini R., Scrivani M.T.: Constitutive equation of peroxide cross-linking of thermoplastic polyolefin rubbers. Polym. Eng. Sci. 45(3), 333–342 (2005)CrossRefGoogle Scholar
  5. 5.
    Brydson J.A.: Rubbery Materials and Their Compouds. Elsevier, Amsterdam (1988)Google Scholar
  6. 6.
    Billmeier F.W. Jr.: Textbook of Polymer Science 3rd edn. Wiley, London (1984)Google Scholar
  7. 7.
    Bateman, L. (ed.): The Chemistry and Physics of Rubber-Like Substances. MacLaren, London (1963)Google Scholar
  8. 8.
    C. Goodyear US Patent 3633 (1844)Google Scholar
  9. 9.
    Morton, M. (ed.): Rubber Technology 2nd edn. Van Nostrand Reinhold, New York (1981)Google Scholar
  10. 10.
    Krejsa M.L., Koenig J.L.: Solid state CNMR studies of vulcanized elastomers. XI. N-t-Butyl benzothiazole sulfenimide accelerated sulphur vulcanization of cis-polyisoprene at 75 MHz. Rubber Chem. Technol. 66, 73–82 (1993)CrossRefGoogle Scholar
  11. 11.
    Krejsa M.L., Koenig J.L.: A review of sulphur cross-linking fundamentals for accelerated and unaccelerated vulcanization. Rubber Chem. Technol. 66, 376–410 (1993)CrossRefGoogle Scholar
  12. 12.
    Milani G., Milani F.: A new simple numerical model based on experimental scorch curve data fitting for the interpretation of sulphur vulcanization. J. Math. Chem. 48, 530–557 (2010)CrossRefGoogle Scholar
  13. 13.
    Milani G., Milani F.: A three function numerical model for the prediction of vulcanization-reversion of rubber during sulfur curing. J. Appl. Polym. Sci. 119, 419–437 (2011)CrossRefGoogle Scholar
  14. 14.
    Milani G., Milani F.: EPDM accelerated sulfur vulcanization: a kinetic model based on a genetic algorithm. J. Math. Chem. 49(7), 1357–1383 (2011)CrossRefGoogle Scholar
  15. 15.
    Milani G., Milani F.: Simple kinetic numerical model based on rheometer data for Ethylene–Propylene –Diene Monomer accelerated sulfur crosslinking. J. Appl. Polym. Sci. 124(1), 311–324 (2012)CrossRefGoogle Scholar
  16. 16.
    Milani G., Milani F.: Direct and closed form analytical model for the prediction of reaction kinetic of EPDM accelerated sulphur vulcanization. J. Math. Chem. 50, 2577–2605 (2012)CrossRefGoogle Scholar
  17. 17.
    S.K. Henning, The Use of Coagents in Sulfur Vulcanization: Functional Zinc Salts. in Proceedings of Spring 167th Technical Meeting of the Rubber Division, American Chemical Society, San Antonio, TX, May 16–18 (2005)Google Scholar
  18. 18.
    L. Corbelli, S. Codiglia, S. Giovanardi, F. Milani, G.C. Ottavi, R. Zucchini, 36th Report Montedison to B.F. Goodrich, May (1977)Google Scholar
  19. 19.
    Dick J.S., Pawlowski H.: Alternate instrumental methods of measuring scorch and cure characteristics. Polym. Test. 14, 45–84 (1995)CrossRefGoogle Scholar
  20. 20.
    Poh B.T., Wong K.W.: Effect of blend ratio on Mooney scorch time of rubber blends. J. Appl. Polym. Sci. 69, 1301–1305 (1998)CrossRefGoogle Scholar
  21. 21.
    Poh B.T., Ng C.C.: Effect of silane coupling agents on the Mooney scorch time of silica-filled natural rubber compound. Eur. Polym. J. 34, 975–979 (1998)CrossRefGoogle Scholar
  22. 22.
    Poh B.T., Chen M.F., Ding B.S.: Cure characteristics of unaccelerated sulfur vulcanization of epoxidized natural rubber. J. Appl. Polym. Sci. 60, 1569–1574 (1996)CrossRefGoogle Scholar
  23. 23.
    Poh B.T., Tan E.K.: Mooney scorch time and cure index of epoxidized natural rubber in presence of sodium carbonate. J. Appl. Polym. Sci. 82, 1352–1355 (2001)CrossRefGoogle Scholar
  24. 24.
    Poh B.T., Ismail H., Tan K.S.: Effect of filler loading on tensile and tear properties of SMR L/ENR 25 and SMR L / SBR blends cured via a semi-efficient vulcanization system. Polym. Test. 21, 801–806 (2002)CrossRefGoogle Scholar
  25. 25.
    Chen C.H., Collins E.A., Shelton J.R., Koenigs J.L.: Compounding variables influencing the reversion process in accelerated curing of natural rubber. Rubber Chem. Tech. 55(4), 1221–1232 (1982)CrossRefGoogle Scholar
  26. 26.
    Loo C.T.: High temperature vulcanization of elastomers: 2. Network structures in conventional sulphenamide-sulphur natural rubber vulcanizates. Polymer 15(6), 357–365 (1974)CrossRefGoogle Scholar
  27. 27.
    Morrison N.J., Porter M.: Crosslinking of Rubbers. In: Allen, G. (ed.) The Synthesis, Characterization, Reactions and Applications of Polymers, Pergamon press, Oxford (1984)Google Scholar
  28. 28.
    Evans G., Blackledge J., Yardley P.: Numerical Methods for Partial Differential Equations 2nd edn. Springer, Berlin (2001)Google Scholar
  29. 29.
    Coleman T.F., Li Y.: Math. Program. 67(2), 189–224 (1994)CrossRefGoogle Scholar
  30. 30.
    Fletcher R.: Practical Methods of Optimization, vol 1, Unconstrained Optimization. Wiley, London (1980)Google Scholar
  31. 31.
    Goldberg D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley, Reading (1989)Google Scholar
  32. 32.
    R.B. Holstien, Artificial genetic adaptation in computer control systems. Ph.D. Thesis, Department of Computer and Communication Sciences, University of Michigan, Ann Arbor (1971)Google Scholar
  33. 33.
    Haupt R.L., Haupt S.E.: Practical Genetic Algorithms. Wiley, London (2004)Google Scholar
  34. 34.
    Ding R., Leonov I.: A kinetic model for sulfur accelerated vulcanization of a natural rubber compound. J. Appl. Polym. Sci. 61, 455–463 (1996)CrossRefGoogle Scholar
  35. 35.
    Ding R., Leonov I., Coran A.Y.: Study of the Vulcanization Kinetics of an Accelerated-Sulfur SBR Compound. Rubber Chem. Technol. 69, 81 (1996)CrossRefGoogle Scholar
  36. 36.
    Duchacek V., Duskova M.: Cure curve with two plateaus—the result of individual vulcanization reactions. J. Polym. Eng. 21, 341 (2001)CrossRefGoogle Scholar
  37. 37.
    Kamal M.R., Sourour S.: Kinetics and thermal characterization of thermoset cure. Polym. Eng. Sci. 13, 59 (1973)CrossRefGoogle Scholar
  38. 38.
    Arrillaga A., Zaldua A.M., Atxurra R.M., Farid A.S.: Techniques used for determining cure kinetics of rubber compounds. Eur. Polym. J. 43, 4783–4799 (2007)CrossRefGoogle Scholar
  39. 39.
    A.Y. Coran, Vulcanization, chap. 7, in Science and Technology of Rubber, ed. by J.E. Mark, B. Erman, F.R. Eirich. (Academic Press, New York, 1978)Google Scholar
  40. 40.
    M. van Duin, Kaut. Gummi Kunststoffe, 55 Jarghang, 2 (2002)Google Scholar
  41. 41.
    Milani G., Milani F.: Genetic Algorithm for the determination of binodal curves in ternary systems Polymer/Liquid(1)/Liquid(2) and Polymer(1)/Polymer(2)/Solvent. J. Comput. Chem. 28(13), 2203–2215 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Politecnico di MilanoPiazza Leonardo da Vinci 32MilanItaly

Personalised recommendations