Journal of Mathematical Chemistry

, Volume 51, Issue 1, pp 278–288 | Cite as

Temperature phase transition model for the DNA-CNTs-based nanotweezers

  • Anh D. Phan
  • Lilia M. Woods
  • N. A. Viet
Original Paper


DNA and Carbon nanotubes (CNTs) have unique physical, mechanical and electronic properties that make them revolutionary materials for advances in technology. In state-of-the-art applications, these physical properties can be exploited to design a type of bio-nanorobot. In this paper, we present the behavior of DNA-based nanotweezers and show the capabilities of controlling this robotic device. The theoretical calculations are based on the Peyrard-Bishop model for DNA dynamics. Furthermore, the influence of the van der Waals force between two CNTs on the opening and closing of nanotweezers is studied in comparison with the stretching forces of DNA.


van der Waals interaction Carbon nanotubes DNA model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Peyrard M., Bishop A.R.: Phys. Rev. Lett. 62, 2755 (1989)CrossRefGoogle Scholar
  2. 2.
    Hien D.L., Nhan N.T., Thanh Ngo V., Viet N.A.: Phys. Rev. E. 76, 021921 (2007)CrossRefGoogle Scholar
  3. 3.
    Singh A.R., Giri D., Kumar S.: J. Chem. Phys. 132, 235105 (2010)CrossRefGoogle Scholar
  4. 4.
    Yang W. et al.: Nanotechnology 18, 412001 (2007)CrossRefGoogle Scholar
  5. 5.
    Le Nam B., Woods L.M.: Phys. Rev. B 86, 035403 (2012)CrossRefGoogle Scholar
  6. 6.
    Hinczewski M., Hansen Y.V., Netz R.R.: Proc. Natl. Acad. Sci. USA 10, 1073 (2004)Google Scholar
  7. 7.
    Zhang W., Zhu Z., Wang F., Wang T., Sun L., Wang Z.: Nanotechnology 15, 936 (2011)CrossRefGoogle Scholar
  8. 8.
    Staii C., Johnson Alan T.: Nano Lett. 5, 1774 (2005)CrossRefGoogle Scholar
  9. 9.
    Kohli P., Harrell C.C., Cao Z., Gasparac R., Tan W., Martin C.R.: Science 305, 984 (2004)CrossRefGoogle Scholar
  10. 10.
    Keren K., Berman R.S., Buchstab E., Sivan U., Braun E.: Science 302, 1380 (2003)CrossRefGoogle Scholar
  11. 11.
    Hamdi M., Ferreira A.: Microelectron. J. 39, 1051 (2006)CrossRefGoogle Scholar
  12. 12.
    Englander S.W., Kallenback N.R., Heeger A.J., Krumhanst J.A., Kitwin S.: Proc. Natl. Acad. Sci. USA 77, 7222 (1980)CrossRefGoogle Scholar
  13. 13.
    Girifalco L.A., Hodak M., Lee R.S.: Phys. Rev. B 62, 13104 (2000)CrossRefGoogle Scholar
  14. 14.
    Rasekh M., Khadem S.E., Tatari M.: J. Phys. D Appl. Phys. 43, 315301 (2010)CrossRefGoogle Scholar
  15. 15.
    Krumhansl J.A., Schriffer J.R.: Phys. Rev. B 6, 3535 (1975)CrossRefGoogle Scholar
  16. 16.
    Currie J.F., Krumhansl J.A., Bishop A.R., Schriffer J.R.: Phys. Rev. B 22, 477 (1980)CrossRefGoogle Scholar
  17. 17.
    Nyeo Su-Long, Yang I-Ching: Phys. Rev. E 63, 046109 (2001)CrossRefGoogle Scholar
  18. 18.
    Popescu A., Woods L.M.: Phys. Rev. B 77, 115443 (2008)CrossRefGoogle Scholar
  19. 19.
    Danilowicz C., Kafri Y., Conroy R.S., Coljee V.W., Weeks J., Prentiss M.: Phys. Rev. Lett. 93, 078101 (2004)CrossRefGoogle Scholar
  20. 20.
    Voulgarakis N.K., Redondo A., Bishop A.R., Rasmussen K.φ.: Phys. Rev. Lett. 96, 248101 (2006)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of South FloridaTampaUSA
  2. 2.Institute of PhysicsHanoiVietnam

Personalised recommendations