Journal of Mathematical Chemistry

, Volume 50, Issue 8, pp 2281–2290 | Cite as


Original Paper


A novel orthorhombic lattice is described that is generated upon a 1,4-cyclohexadieneoid motif, and is a model of a potential allotrope of C. The orthorhombic lattice (Ammm, space group #65) that is described, is called isoglitter as it is a structural relative of the tetragonal glitter lattice (P42/mmc, space group #131) first proposed in 1994 by Bucknum et al. A geometrical optimization of the isoglitter lattice, employing the Cambridge Serial Total Energy Package (CASTEP) algorithm based upon density functional theory (DFT) was performed. The present report is an account of the CASTEP optimized isoglitter crystal structure, including an idealized drawing of the unit cell, and a set of optimized crystallographic coordinates for isoglitter. Results of an electronic band structure calculation, together with a density of states (DOS) profile for the lattice based upon CASTEP, are reported as well. The unit cell of isoglitter contains 8 C atoms and has a DFT modeled density of about 3.009 g/cm3. Isoglitter is comprised entirely of planar and chair-like 6-gons, and puckered 8-gons, in its structural pattern. The Wells point symbol for the network is cited here as (63)(65.8) and it is thus not a true graphene–diamond hybrid, where this point symbol translates to a Schlaefli symbol given as (62/9, 31/2). Based upon its connectivity, comprised of 3-connected trigonal planar vertices in a 1-to-1 stoichiometry with 4-connected tetrahedral vertices, the novel lattice is positioned midway between the graphene sheet, located at (6, 3), and the diamond lattice, located at (6, 4), in the topology mapping of structures described earlier by Wells.


Carbon allotrope Crystalline Glitter Metallic 1, 4-cyclohexadiene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.F. Wells, Three Dimensional Nets & Polyhedra, 1st edn. (Wiley, New York, NY, 1977)Google Scholar
  2. 2.
    A.F. Wells, Further Studies of Three Dimensional Nets. American Crystallographic Association (ACA), monograph #8, 1st edn. (ACA Press Pittsburgh, PA, 1979)Google Scholar
  3. 3.
    Ruddleson S.N., Popper P.: Acta Crystallographica 11, 465 (1958)CrossRefGoogle Scholar
  4. 4.
    Waser J., McClanahan E.D.: J. Chem. Phys. 19, 413 (1951)CrossRefGoogle Scholar
  5. 5.
    M.J. Bucknum, Hypothetical Allotropes of Carbon Built from 1,4-Cyclohexadieneoid Rings. Disclosure document #337,466. United States Patent & Trademark Office (USPTO), 23 Aug 1993Google Scholar
  6. 6.
    M.J. Bucknum, Hypothetical Allotropes of Carbon Built from 1,4-Cyclohexadieneoid Rings. Nature Precedings, hdl:10101/npre.2008.1530.1, Jan 23 2008Google Scholar
  7. 7.
    O’Keeffe M., Peskov M.A., Ramsden S.J., Yaghi O.M.: Acc. Chem. Res. 41, 1782 (2008)CrossRefGoogle Scholar
  8. 8.
    Bucknum M.J., Hoffmann R.: J. Am. Chem. Soc. 116, 11456 (1994)CrossRefGoogle Scholar
  9. 9.
    Hohnenberg P., Kohn W.: Phys. Rev. B 136, 864 (1964)CrossRefGoogle Scholar
  10. 10.
    T. Hahn (ed.), International Tables for Crystallography, vol. A: Space Group Symmetry (Kluwer, Dordrecht, 1995)Google Scholar
  11. 11.
    Bucknum M.J., Castro E.A.: J. Math. Chem. 46, 117 (2009)CrossRefGoogle Scholar
  12. 12.
    Balaban A.T., Klein D.J., Folden C.A.: Chem. Phys. Lett. 217, 266 (1994)CrossRefGoogle Scholar
  13. 13.
    Clark S.J., Segall M.D., Pickard C.J., Hasnip P.J., Probert M.I.J., Refson K., Payne M.C.: Zeitschrift fuer Kristallographie 220, 567 (2005)CrossRefGoogle Scholar
  14. 14.
    Hamann D.R., Schluter M., Chiang C.: Phys. Rev. Lett. 43, 1494 (1979)CrossRefGoogle Scholar
  15. 15.
    Payne M.C., Teter M.P., Allan D.C., Arias T.A., Joannopoulos J.D.: Rev. Mod. Phys. 64, 1045 (1992)CrossRefGoogle Scholar
  16. 16.
    Perdew J.P., Burke K., Ernzerhof M.: Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
  17. 17.
    Carreira L.A., Carter R.O., Durig J.R.: J. Chem. Phys. 59, 812 (1973)CrossRefGoogle Scholar
  18. 18.
    Merz K.M., Hoffmann R., Balaban A.T.: J. Am. Chem. Soc. 109, 6742 (1987)CrossRefGoogle Scholar
  19. 19.
    Bucknum M.J., Stamatin I., Castro E.A.: Mol. Phys. 103(20), 2707 (2005)CrossRefGoogle Scholar
  20. 20.
    Bucknum M.J., Pickard C.J., Stamatin I., Castro E.A.: J. Theor. Comput. Chem. 5(2), 175 (2006)CrossRefGoogle Scholar
  21. 21.
    Wang J.T. et al.: Phys. Rev. Lett. 106, 75501 (2011)CrossRefGoogle Scholar
  22. 22.
    Bucknum M.J., Castro E.A.: J. Math. Chem. 38(1), 27 (2005)CrossRefGoogle Scholar
  23. 23.
    Liu A.Y., Cohen M.L.: Science 245, 842 (1989)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Michael J. Bucknum
    • 1
  • Eduardo A. Castro
    • 1
  • Bin Wen
    • 2
  1. 1.INIFTA, Theoretical Chemistry DivisionUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.State Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdaoChina

Personalised recommendations