Evaluation of Hylleraas-CI atomic integrals. III. Two-electron kinetic energy integrals

Original Paper


This paper is the part III of a series about the evaluation of Hylleraas-Configuration Interaction (Hy-CI) integrals by the method of direct integration over the interelectronic coordinates. The two-electron kinetic-energy integrals have been derived using the Hamiltonian in Hylleraas coordinates. We have improved the algorithm used in part II of this series and obtained general expressions. The method used for the two-electron integrals can be used in the same fashion for the evaluation of the three-electron ones. The formulas shown here have been tested in actual Hy-CI calculations of two-electron systems. The two-electron kinetic energy integrals values agree with the ones obtained using the Kolos and Roothaan transformation. The effectiveness of the different methods is discussed.


Hylleraas-Configuration Interaction Two-electron integrals Kinetic-energy integrals Slater orbitals 


  1. 1.
    Sims J.S., Hagstrom S.A.: J. Chem. Phys. 55, 4699 (1971)CrossRefGoogle Scholar
  2. 2.
    Sims J.S., Hagstrom S.A.: Phys. Rev. A 4, 908 (1971)CrossRefGoogle Scholar
  3. 3.
    Sims J.S., Hagstrom S.A.: Int. J. Quantum Chem. 90, 1600 (2002)CrossRefGoogle Scholar
  4. 4.
    Sims J.S., Hagstrom S.A.: J. Chem. Phys. 124, 094101 (2006)CrossRefGoogle Scholar
  5. 5.
    Sims J.S., Hagstrom S.A.: Phys. Rev. A 80, 052507 (2009)CrossRefGoogle Scholar
  6. 6.
    Büsse G., Kleindienst H., Lüchow A.: Int. J. Quantum Chem. 66, 241 (1998)CrossRefGoogle Scholar
  7. 7.
    S. Sims, S.A. Hagstrom: Phys. Rev. A 83, 032512 (2011)CrossRefGoogle Scholar
  8. 8.
    M.B. Ruiz, in Advances in the Theory of Quantum Systems in Chemistry and Physics, ed. by P.E. Hoggan et al. Progress in Theoretical Chemistry and Physics, vol 22 (Springer, 2011). ISBN:978-94-007-2075-6Google Scholar
  9. 9.
    A.M. Frolov, M.B. Ruiz, Phys. Rev. A. 82, 042511 (2010); arXiv:1007.4674v1 [physics.atom-ph]Google Scholar
  10. 10.
    Aquino N., Garza J., Flores-Riveros A., Rivas-Silva J.F., Sen K.D.: J. Chem. Phys. 124, 054311 (2006)CrossRefGoogle Scholar
  11. 11.
    Frolov A.M., Wardlaw D.M.: Phys. Rev. A 79, 032703 (2009)CrossRefGoogle Scholar
  12. 12.
    Barth R.F., Coderre J.A., Vicente M.G.H., Bue T.E.: Clin. Cancer Res. 11, 3987 (2005)CrossRefGoogle Scholar
  13. 13.
    Ruiz M.B.: J. Math. Chem. 46, 24 (2009)CrossRefGoogle Scholar
  14. 14.
    Ruiz M.B.: Int. J. Quantum Chem. 101, 24 (2005)CrossRefGoogle Scholar
  15. 15.
    Sims J.S., Hagstrom S.A.: J. Phys. B: At. Mol. Opt. Phys. 40, 1575 (2007)CrossRefGoogle Scholar
  16. 16.
    Kolos W., Roothaan C.C.J.: Rev. Mod. Phys. 32, 219 (1960)CrossRefGoogle Scholar
  17. 17.
    Hylleraas E.A.: Z. Phys. 54, 347 (1929)CrossRefGoogle Scholar
  18. 18.
    Varshalovich D.A., Moskalev A.N., Khersonskii V.K.: Quantum Theory of Angular Momentum. World Scientific, Singapore (1988)Google Scholar
  19. 19.
    Wong B.R.: J. Phys. A: Math. Gen. 31, 1101 (1998)CrossRefGoogle Scholar
  20. 20.
    Condon E.U., Shortley G.H.: The Theory of Atomic Spectra. Cambridge University Press, Cambridge (1967)Google Scholar
  21. 21.
    Stevenson R.: Multiplet Structure of Atoms and Molecules. W.B. Saunders Company, Philadelphia & London (1965)Google Scholar
  22. 22.
    Ruiz M.B.: J. Math. Chem. 46, 1322 (2009)CrossRefGoogle Scholar
  23. 23.
    Rodrigues O. Mémoire sur l’attraction des sphéroides vol. 3 (Correspondence sur l’Ecole Royale Polytechnique, , 1816), pp. 361–385Google Scholar
  24. 24.
    Frolov A.M., Smith V.H.: Int. J. Quantum Chem. 63, 269 (1996)CrossRefGoogle Scholar
  25. 25.
    Sims J.S., Hagstrom S.A.: J. Phys. B: At. Mol. Opt. Phys. 37, 1519 (2004)CrossRefGoogle Scholar
  26. 26.
    Roothaan C.C., Weiss A.W.: Rev. Mod. Phys. 32, 194 (1960)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Theoretical Chemistry of the Friedrich-Alexander-University Erlangen-NürnbergErlangenGermany

Personalised recommendations