Advertisement

Journal of Mathematical Chemistry

, Volume 49, Issue 9, pp 1915–1927 | Cite as

Newton trajectories for finding stationary points on molecular potential energy surfaces

  • Yuli Liu
  • Steven K. Burger
  • Paul W. Ayers
Original Paper

Abstract

We present a new algorithm for computing Newton trajectories based on the Quadratic String Method (QSM) and explain how this can be used to find key stationary points on the molecular potential energy surface (PES). This method starts by using the intersections of Newton trajectories to locate stationary points on the PES. These points could then be used to determine the minimum energy path. The new method, called QSM-NT, is shown to be efficient and reliable for both analytical potential energy surfaces and potential energy surfaces computed from quantum chemistry calculations. The advantages and pitfalls of this method for exploring PES are discussed. In particular, the problem of discontinuous Newton trajectories is elucidated.

Keywords

Newton trajectory Quadratic string method Stationary points Minimum energy path 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schlegel H.B.: J. Comput. Chem. 24, 1514 (2003)CrossRefGoogle Scholar
  2. 2.
    Quapp W., Hirsch M., Imig O., Heidrich D.: J. Comput. Chem. 19, 1087 (1998)CrossRefGoogle Scholar
  3. 3.
    Quapp W.: J. Math. Chem. 36, 365 (2004)CrossRefGoogle Scholar
  4. 4.
    Quapp W.: Theor. Chem. Acc. 121, 227 (2008)CrossRefGoogle Scholar
  5. 5.
    Burger S.K., Yang W.T.: J. Chem. Phys. 124, 054109 (2006)CrossRefGoogle Scholar
  6. 6.
    Fukui K.: Acc. Chem. Res. 14(12), 363 (1981)CrossRefGoogle Scholar
  7. 7.
    Irikura K.K., Johnson R.D.: J. Phys. Chem. A 104, 2191 (2000)CrossRefGoogle Scholar
  8. 8.
    Dey B.K., Ayers P.W.: Mol. Phys. 104, 541 (2006)CrossRefGoogle Scholar
  9. 9.
    Y.L. Liu, S.K. Burger, B.K. Dey, U. Sarkar, M. Janicki, and P.W. Ayers, in Quantum Biochemistry, edited by C.F. Matta (Wiley-VCH, Boston, 2010)Google Scholar
  10. 10.
    Ohno K., Maeda S.: Chem. Phys. Lett. 384(4–6), 277 (2006)Google Scholar
  11. 11.
    Maeda S., Watanabe Y., Ohno K.: Chem. Phys. Lett. 414(4–6), 265 (2005)CrossRefGoogle Scholar
  12. 12.
    Burger S.K., Ayers P.W.: J. Chem. Theory Comput. 6, 1490 (2010)CrossRefGoogle Scholar
  13. 13.
    Ohno K., Maeda S.: Phys. Scr. 78, 058122 (2008)CrossRefGoogle Scholar
  14. 14.
    Maeda S., Ohno K.: J. Phys. Chem. A 109, 5742 (2005)CrossRefGoogle Scholar
  15. 15.
    Ohno K., Maeda S.: J. Phys. Chem. A 110, 8933 (2006)CrossRefGoogle Scholar
  16. 16.
    Ren W.N.E, W.Q., Vanden-Eijnden E.: J. Chem. Phys. 126, 164103 (2007)CrossRefGoogle Scholar
  17. 17.
    Ren W.N.E, W.Q., Vanden-Eijnden E.: Phys. Rev. B 66, 052301 (2002)Google Scholar
  18. 18.
    Xie L., Liu H.Y., Yang W.T.: J. Chem. Phys. 120, 8039 (2004)CrossRefGoogle Scholar
  19. 19.
    Maragakis P., Andreev S.A., Brumer Y., Reichman D.R., Kaxiras E.: J. Chem. Phys. 117, 4651 (2002)CrossRefGoogle Scholar
  20. 20.
    Henkelman G., Uberuaga B.P., Jonsson H.: J. Chem. Phys. 113, 9901 (2000)CrossRefGoogle Scholar
  21. 21.
    Trygubenko S.A., Wales D.J.: J. Chem. Phys. 120, 2082 (2004)CrossRefGoogle Scholar
  22. 22.
    Carr J.M., Trygubenko S.A., Wales D.J.: J. Chem. Phys. 122, 234903 (2005)CrossRefGoogle Scholar
  23. 23.
    Weinan E., Ren W.Q., Vanden-Eijnden E.: J. Phys. Chem. B 109, 6688 (2005)CrossRefGoogle Scholar
  24. 24.
    Peters B., Heyden A., Bell A.T., Chakraborty A.: J. Chem. Phys. 120, 7877 (2004)CrossRefGoogle Scholar
  25. 25.
    Henkelman G., Jonsson H.: J. Chem. Phys. 113, 9978 (2000)CrossRefGoogle Scholar
  26. 26.
    Sheppard D., Terrell R., Henkelman G.: J. Chem. Phys. 128, 134106 (2008)CrossRefGoogle Scholar
  27. 27.
    Mills G., Jonsson H.: Phys. Rev. Lett. 72, 1124 (1994)CrossRefGoogle Scholar
  28. 28.
    Mills G., Jonsson H., Schenter G.K.: Surf. Sci. 324, 305 (1995)CrossRefGoogle Scholar
  29. 29.
    Chu J.W., Trout B.L., Brooks B.R.: J. Chem. Phys. 119, 12708 (2003)CrossRefGoogle Scholar
  30. 30.
    Burger S.K., Yang W.: J. Chem. Phys. 127, 164107 (2007)CrossRefGoogle Scholar
  31. 31.
    Dey B.K., Janicki M.R., Ayers P.W.: J. Chem. Phys. 121, 6667 (2004)CrossRefGoogle Scholar
  32. 32.
    Burger S.K., Liu Y.L., Sarkar U., Ayers P.W.: J. Chem. Phys. 130, 024103 (2009)CrossRefGoogle Scholar
  33. 33.
    Burger S.K., Ayers P.W.: J. Chem. Phys. 132, 234110 (2010)CrossRefGoogle Scholar
  34. 34.
    Dey B.K., Bothwell S., Ayers P.W.: J. Math. Chem. 41, 1 (2007)CrossRefGoogle Scholar
  35. 35.
    Dey B.K., Ayers P.W.: Mol. Phys. 105, 71 (2007)CrossRefGoogle Scholar
  36. 36.
    Quapp W.: J. Chem. Phys. 122, 174106 (2005)CrossRefGoogle Scholar
  37. 37.
    Quapp W.: Journal of Theoretical & Computational Chemistry 8, 101 (2009)CrossRefGoogle Scholar
  38. 38.
    Quapp W., Heidrich D.: J. Mol. Struct.-Theochem 585, 105 (2002)CrossRefGoogle Scholar
  39. 39.
    Quapp W.: J. Theor. Comput. Chem. 2, 385 (2003)CrossRefGoogle Scholar
  40. 40.
    Quapp W.: J. Comput. Chem. 25, 1277 (2004)CrossRefGoogle Scholar
  41. 41.
    Hirsch M., Quapp W.: Chem. Phys. Lett. 395, 150 (2004)CrossRefGoogle Scholar
  42. 42.
    Hirsch M., Quapp W.: J. Mol. Struct.-Theochem 683, 1 (2004)CrossRefGoogle Scholar
  43. 43.
    Hirsch M., Quapp W.: J. Math. Chem. 36, 307 (2004)CrossRefGoogle Scholar
  44. 44.
    Hirsch M., Quapp W.: Theor. Chem. Acc. 113, 58 (2005)CrossRefGoogle Scholar
  45. 45.
    Quapp W.: J. Comput. Chem. 28, 1834 (2007)CrossRefGoogle Scholar
  46. 46.
    Quapp W., Kraka E., Cremer D.: J. Phys. Chem. A 111, 11287 (2007)CrossRefGoogle Scholar
  47. 47.
    Bofill J.M., Quapp W.: J. Chem. Phys. 134, 074101 (2011)CrossRefGoogle Scholar
  48. 48.
    Quapp W., Schmidt B.: Theor. Chem. Acc. 128, 47 (2011)CrossRefGoogle Scholar
  49. 49.
    J. Gonzalez, X. Gimenez, J.M. Bofill, PCCP. 13, 2921 (2002)Google Scholar
  50. 50.
    One problem is that one can have NTs that have multiple maxima (some of which are turning points, rather than transition states) or NTs that have a single maximum that is a turning point, but don’t pass through the transition state. Such NTs are not candidate reaction paths. Cf. ref. [35]Google Scholar
  51. 51.
    Muller K., Brown L.D.: Theor. Chim. Act. 53, 75 (1979)CrossRefGoogle Scholar
  52. 52.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Peersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, O. Salvetti, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian03, Revision D.01 (Gaussian Inc., Wallingford 2004)Google Scholar
  53. 53.
    Becke A.D.: J. Chem. Phys. 98, 1372 (1993)CrossRefGoogle Scholar
  54. 54.
    Lee C., Yang W., Parr R.G.: Phys. Rev. B 37, 785 (1988)CrossRefGoogle Scholar
  55. 55.
    Quapp W., Hirsch M., Heidrich D.: Theor. Chem. Acc. 112, 40 (2004)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical BiologyMcMaster UniversityHamiltonCanada

Personalised recommendations