Advertisement

Journal of Mathematical Chemistry

, Volume 49, Issue 9, pp 1843–1888 | Cite as

A family of ten-step methods with vanished phase-lag and its first derivative for the numerical solution of the Schrödinger equation

  • Ibraheem Alolyan
  • T. E. Simos
Original Paper

Abstract

A family of high algebraic order ten-step methods is obtained in this paper. The new developed methods have vanished phase-lag (the first one) and phase-lag and its first derivative (the second one). We apply the new developed methods to the resonance problem of the radial Schrödinger equation. The efficiency of the new proposed methods is shown via error analysis and numerical applications.

Keywords

Numerical solution Schrödinger equation Multistep methods Hybrid methods Interval of periodicity P-stability Phase-lag Phase-fitted Derivatives of the phase-lag 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ixaru L.Gr., Micu M.: Topics in Theoretical Physics. Central Institute of Physics, Bucharest (1978)Google Scholar
  2. 2.
    Landau L.D., Lifshitz F.M.: Quantum Mechanics. Pergamon, New York (1965)Google Scholar
  3. 3.
    Prigogine, I., Rice, S. (eds): Advances in Chemical Physics Vol 93: New Methods in Computational Quantum Mechanics. Wiley, London (1997)Google Scholar
  4. 4.
    Herzberg G.: Spectra of Diatomic Molecules. Van Nostrand, Toronto (1950)Google Scholar
  5. 5.
    T.E. Simos, Atomic structure computations in chemical modelling: applications and theory, ed. by A. Hinchliffe, UMIST, The Royal Society of Chemistry, pp. 38–142 (2000)Google Scholar
  6. 6.
    Simos T.E.: Numerical methods for 1D, 2D and 3D differential equations arising in chemical problems. Chem. Model. Appl. Theory Roy. Soc. Chem. 2, 170–270 (2002)Google Scholar
  7. 7.
    T.E. Simos, Numerical Solution of Ordinary Differential Equations with Periodical Solution. Doctoral Dissertation, National Technical University of Athens, Greece, 1990 (in Greek)Google Scholar
  8. 8.
    Dormand J.R., El-Mikkawy M.E.A., Prince P.J.: Families of Runge-Kutta-Nyström formulae. IMA J. Numer. Anal. 7, 235–250 (1987)CrossRefGoogle Scholar
  9. 9.
    Dormand J.R., Prince P.J.: A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)CrossRefGoogle Scholar
  10. 10.
    Simos T.E., Vigo-Aguiar Jesus: A modified Runge-Kutta method with phase-lag of order infinity for the numerical solution of the of Schrödinger equation and related problems. Comput Chem 25, 275–281 (2001)CrossRefGoogle Scholar
  11. 11.
    Simos T.E., Vigo-Aguiar J.: A modified phase-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation. J. Math. Chem. 30(1), 121–131 (2001)CrossRefGoogle Scholar
  12. 12.
    Simos T.E., Williams P.S.: A new Runge-Kutta-Nyström method with phase-lag of order infinity for the numerical solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 45, 123–137 (2002)Google Scholar
  13. 13.
    Tsitouras Ch., Simos T.E.: Optimized Runge-Kutta pairs for problems with oscillating solutions. J. Comput. Appl. Math. 147(2), 397–409 (2002)CrossRefGoogle Scholar
  14. 14.
    Anastassi Z.A., Simos T.E.: Special Optimized Runge-Kutta methods for IVPs with oscillating solutions. Int. J. Mod. Phys. C 15, 1–15 (2004)CrossRefGoogle Scholar
  15. 15.
    Anastassi Z.A., Simos T.E.: A dispersive-fitted and dissipative-fitted Explicit Runge-Kutta method for the numerical solution of orbital problems. New Astron. 10, 31–37 (2004)CrossRefGoogle Scholar
  16. 16.
    Tselios K., Simos T.E.: Runge-Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics. J. Comput. Appl. Math. 175(1), 173–181 (2005)CrossRefGoogle Scholar
  17. 17.
    Anastassi Z.A., Simos T.E.: An optimized Runge-Kutta method for the solution of orbital problems. J. Comput. Appl. Math. 175(1), 1–9 (2005)CrossRefGoogle Scholar
  18. 18.
    Tselios K., Simos T.E.: Optimized Runge-Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics. Phys. Lett. A 363(1–2), 38–47 (2007)CrossRefGoogle Scholar
  19. 19.
    Triantafyllidis T.V., Anastassi Z.A., Simos T.E.: Two optimized Runge-Kutta methods for the solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 60(3), 753–771 (2008)Google Scholar
  20. 20.
    Papadopoulos D.F., Anastassi Z.A., Simos T.E.: A phase-fitted Runge-Kutta-Nystrom method for the numerical solution of initial value problems with oscillating solutions. Comput. Phys. Commun. 180(10), 1839–1846 (2009)CrossRefGoogle Scholar
  21. 21.
    Kosti A.A., Anastassi Z.A., Simos T.E.: An optimized explicit Runge-Kutta method with increased phase-lag order for the numerical solution of the Schrödinger equation and related problems. J. Math. Chem. 47(1), 315–330 (2010)CrossRefGoogle Scholar
  22. 22.
    Papadopoulos D.F., Anastassi Z.A., Simos T.E.: A modified phase-fitted and amplification-fitted Runge-Kutta-Nyström method for the numerical solution of the radial Schrödinger equation. J. Mol. Model. 16(8), 1339–1346 (2010)CrossRefGoogle Scholar
  23. 23.
    Papadopoulos D.F., Anastassi Z.A., Simos T.E.: The use of phase-lag and amplification error derivatives in the numerical integration of ODES with oscillating solutions. International Conference on Numerical Analysis and Applied Mathematics, SEP 18–22, 2009 Rethymno, Greece, Numerical Analysis and Applied Mathematics, vols. 1 and 2. AIP Conference Proceedings 1168, 547–549 (2009)Google Scholar
  24. 24.
    Papadopoulos D.F., Anastassi Z.A., Simos T.E.: A zero dispersion RKN method for the numerical integration of initial value problems with oscillating solutions. Conference Information: International Conference on Numerical Analysis and Applied Mathematics, SEP 18–22, 2009 Rethymno, Greece, Numerical Analysis and Applied Mathematics, vols. 1 and 2. AIP Conference Proceedings 1168, 550–553 (2009)Google Scholar
  25. 25.
    Monovasilis T., Kalogiratou Z., Simos T.E.: A phase-fitted symplectic partitioned Runge-Kutta Methods for the numerical solution of the Schrödinger equation. International Conference on Numerical Analysis and Applied Mathematics, SEP 18–22, 2009 Rethymno, Greece, Numerical Analysis and Applied Mathematics, vols. 1 And 2. AIP Conference Proceedings 1168, 1595–1599 (2009)Google Scholar
  26. 26.
    Papadopoulos D.F., Anastassi Z.A., Simos T.E.: An optimized Runge-Kutta-Nyström method for the numerical solution of the Schrödinger equation and related problems. MATCH Commun. Math. Comput. Chem. 64(2), 551–566 (2010)Google Scholar
  27. 27.
    Papadopoulos D.F., Anastassi Z.A., Simos T.E.: A modified zero dispersion and zero dissipation RKN method for the numerical solution of the radial Schrödinger equation. International Conference on Numerical Analysis and Applied Mathematics, SEP 18–22, 2009 Rethymno, Greece, Numerical Analysis and Applied Mathematics, Vols 1 And 2. AIP Conference Proceedings 1168, 1604–1607 (2009)Google Scholar
  28. 28.
    Kalogiratou Z., Simos T.E.: Construction of trigonometrically and exponentially fitted Runge-Kutta-Nyström methods for the numerical solution of the Schrödinger equation and related problems a method of 8th algebraic order. J. Math. Chem. 31(2), 211–232 (2002)CrossRefGoogle Scholar
  29. 29.
    Anastassi Z.A., Simos T.E.: Trigonometrically fitted Runge-Kutta methods for the numerical solution of the Schrödinger equation. J. Math. Chem 37(3), 281–293 (2005)CrossRefGoogle Scholar
  30. 30.
    Anastassi Z.A., Simos T.E.: A family of exponentially-fitted Runge-Kutta methods with exponential order up to three for the numerical solution of the Schrödinger equation. J. Math. Chem 41(1), 79–100 (2007)CrossRefGoogle Scholar
  31. 31.
    Monovasilis T., Kalogiratou Z., Simos T.E.: A family of trigonometrically fitted partitioned Runge-Kutta symplectic methods. Appl. Math. Comput. 209(1), 91–96 (2009)CrossRefGoogle Scholar
  32. 32.
    Kalogiratou Z., Monovasilis T., Simos T.E.: Computation of the eigenvalues of the Schrödinger equation by exponentially-fitted Runge-Kutta-Nyström methods. Comput. Phys. Commun. 180(2), 167–176 (2009)CrossRefGoogle Scholar
  33. 33.
    Kalogiratou Z., Monovasilis T., Simos T.E.: New modified Runge-Kutta-Nyström methods for the numerical integration of the Schrödinger equation. Comput. Math. Appl. 60(6), 1639–1647 (2010)CrossRefGoogle Scholar
  34. 34.
    Lambert J.D., Watson I.A.: Symmetric multistep methods for periodic initial values problems. J. Inst. Math. Appl. 18, 189–202 (1976)CrossRefGoogle Scholar
  35. 35.
    Quinlan G.D., Tremaine S.: Astron. J. 100(5), 1694–1700 (1990)CrossRefGoogle Scholar
  36. 36.
  37. 37.
    Simos T.E., Williams P.S.: A finite-difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 79(2), 189–205 (1997)CrossRefGoogle Scholar
  38. 38.
    Avdelas G., Konguetsof A., Simos T.E.: A family of hybrid eighth order methods with minimal phase-lag for the numerical solution of the Schrödinger equation and related problems. Int. J. Mod. Phys. C 11, 415–437 (2000)Google Scholar
  39. 39.
    G. Avdelas, T.E. Simos, Dissipative high phase-lag order Numerov-type methods for the numerical solution of the Schrödinger equation. Phys. Rev. E, pp. 1375–1381 (2000)Google Scholar
  40. 40.
    Avdelas G., Simos T.E.: On variable-step methods for the numerical solution of Schrödinger equation and related problems. Comput. Chem. 25, 3–13 (2001)CrossRefGoogle Scholar
  41. 41.
    Simos T.E., Williams P.S.: New insights in the development of Numerov-type methods with minimal phase-lag for the numerical solution of the Schrödinger equation. Comput. Chem 25, 77–82 (2001)CrossRefGoogle Scholar
  42. 42.
    Avdelas G., Konguetsof A., Simos T.E.: A generator of hybrid explicit methods for the numerical solution of the Schrödinger equation and related problems. Comput. Phys. Commun. 136, 14–28 (2001)CrossRefGoogle Scholar
  43. 43.
    Simos T.E., Vigo-Aguiar Jesus: A symmetric high-order method with minimal phase-lag for the numerical solution of the Schrödinger equation. Int. J. Mod. Phys. C 12, 1035–1042 (2001)CrossRefGoogle Scholar
  44. 44.
    Simos T.E., Vigo-Aguiar Jesus: On the construction of efficient methods for second order IVPs with oscillating solution. Int. J. Mod. Phys. C 12, 1453–1476 (2001)CrossRefGoogle Scholar
  45. 45.
    Avdelas G., Konguetsof A., Simos T.E.: A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 1. Development of the basic method. J. Math. Chem. 29(4), 281–291 (2001)CrossRefGoogle Scholar
  46. 46.
    Avdelas G., Konguetsof A., Simos T.E.: A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 2. Development of the generator; optimization of the generator and numerical results. J. Math. Chem. 29(4), 293–305 (2001)CrossRefGoogle Scholar
  47. 47.
    Tsitouras Ch., Simos T.E.: High algebraic, high phase-lag order embedded Numerov-type methods for oscillatory problems. Appl. Math. Comput. 131, 201–211 (2002)CrossRefGoogle Scholar
  48. 48.
    Avdelas G., Konguetsof A., Simos T.E.: A generator of dissipative methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 148, 59–73 (2002)CrossRefGoogle Scholar
  49. 49.
    Konguetsof A., Simos T.E.: P-stable eighth algebraic order methods for the numerical solution of the Schrödinger equation. Comput. Chem. 26, 105–111 (2002)CrossRefGoogle Scholar
  50. 50.
    Simos T.E., Vigo-Aguiar J.: Symmetric eighth algebraic order methods with minimal phase-lag for the numerical solution of the Schrödinger equation. J. Math. Chem. 31(2), 135–144 (2002)CrossRefGoogle Scholar
  51. 51.
    Konguetsof A., Simos T.E.: A generator of hybrid symmetric four-step methods for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 93–106 (2003)CrossRefGoogle Scholar
  52. 52.
    Simos T.E., Famelis I.T., Tsitouras Ch.: Zero dissipative, explicit Numerov-type methods for second order IVPs with oscillating solutions. Numer. Algorithms 34(1), 27–40 (2003)CrossRefGoogle Scholar
  53. 53.
    Sakas D.P., Simos T.E.: Multiderivative methods of eighth algrebraic order with minimal phase-lag for the numerical solution of the radial Schrödinger equation. J. Comput. Appl. Math. 175(1), 161–172 (2005)CrossRefGoogle Scholar
  54. 54.
    Sakas D.P., Simos T.E.: A family of multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 317–331 (2005)CrossRefGoogle Scholar
  55. 55.
    Panopoulos G.A., Anastassi Z.A., Simos T.E.: Two new optimized eight-step symmetric methods for the efficient solution of the Schrödinger equation and related problems. MATCH Commun. Math. Comput. Chem. 60(3), 773–785 (2008)Google Scholar
  56. 56.
    Simos T.E.: A new Numerov-type method for the numerical solution of the Schrödinger equation. J. Math. Chem. 46(3), 981–1007 (2009)CrossRefGoogle Scholar
  57. 57.
    Alolyan I., Simos T.E.: High algebraic order methods with vanished phase-lag and its first derivative for the numerical solution of the Schrödinger equation. J. Math. Chem. 48(4), 925–958 (2010)CrossRefGoogle Scholar
  58. 58.
    Alolyan I., Simos T.E.: Multistep methods with vanished phase-lag and its first and second derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 48(4), 1092–1143 (2010)CrossRefGoogle Scholar
  59. 59.
    Alolyan I., Simos T.E.: A family of eight-step methods with vanished phase-lag and its derivatives for the numerical integration of the Schrd̈inger equation. J. Math. Chem. 49(3), 711–764 (2011)CrossRefGoogle Scholar
  60. 60.
    Panopoulos G.A., Anastassi Z.A., Simos T.E.: A new symmetric eight-step predictor-corrector method for rhe numerical solution of the radial Schrödinger equation and related orbital problems. International Journal Of Modern Physics C 22(2), 133–153 (2011)CrossRefGoogle Scholar
  61. 61.
    Konguetsof A.: A New Two-Step Hybrid Method for the Numerical Solution of the Schrödinger Equation. J. Math. Chem. 47(2), 871–890 (2010)CrossRefGoogle Scholar
  62. 62.
    Tselios K., Simos T.E.: Symplectic methods for the numerical solution of the radial Shrödinger equation. J. Math. Chem. 34(1–2), 83–94 (2003)CrossRefGoogle Scholar
  63. 63.
    Tselios K., Simos T.E.: Symplectic methods of fifth order for the numerical solution of the radial Shrodinger equation. J. Math. Chem 35(1), 55–63 (2004)CrossRefGoogle Scholar
  64. 64.
    Monovasilis T., Simos T.E.: New second-order exponentially and trigonometrically fitted symplectic integrators for the numerical solution of the time-independent Schrödinger equation. J. Math. Chem. 42(3), 535–545 (2007)CrossRefGoogle Scholar
  65. 65.
    Monovasilis T., Kalogiratou Z., Simos T.E.: Exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 37(3), 263–270 (2005)CrossRefGoogle Scholar
  66. 66.
    Monovasilis T., Kalogiratou Z., Simos T.E.: Trigonometrically fitted and exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 40(3), 257–267 (2006)CrossRefGoogle Scholar
  67. 67.
    Kalogiratou Z., Simos T.E.: Newton-Cotes formulae for long-time integration. J. Comput. Appl. Math. 158(1), 75–82 (2003)CrossRefGoogle Scholar
  68. 68.
    Simos T.E.: High order closed Newton-Cotes trigonometrically-fitted formulae for the numerical solution of the Schrödinger equation. Appl. Math. Comput. 209(1), 137–151 (2009)CrossRefGoogle Scholar
  69. 69.
    Simos T.E.: Closed Newton-Cotes Trigonometrically-Fitted Formulae for the Solution of the Schrödinger Equation. MATCH Commun. Math. Comput. Chem. 60(3), 787–801 (2008)Google Scholar
  70. 70.
    Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae of high order for the numerical integration of the Schrödinger equation. J. Math. Chem. 44(2), 483–499 (2008)CrossRefGoogle Scholar
  71. 71.
    Simos T.E.: High-order closed Newton-Cotes trigonometrically-fitted formulae for long-time integration of orbital problems. Comput. Phys. Commun. 178(3), 199–207 (2008)CrossRefGoogle Scholar
  72. 72.
    Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae for numerical integration of the Schrödinger equation. Comput. Lett. 3(1), 45–57 (2007)CrossRefGoogle Scholar
  73. 73.
    Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae for long-time integration of orbital problems. Rev. MexAA 42(2), 167–177 (2006)Google Scholar
  74. 74.
    Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae for long-time integration. Int. J. Mod. Phys C 14(8), 1061–1074 (2003)CrossRefGoogle Scholar
  75. 75.
    T.E. Simos, New closed Newton-Cotes type formulae as multilayer symplectic integrators. J. Chem. Phy. 133(10), Article Number: 104108 (2010)Google Scholar
  76. 76.
    Kalogiratou Z., Monovasilis T., Simos T.E.: Symplectic integrators for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 83–92 (2003)CrossRefGoogle Scholar
  77. 77.
    Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae of high-order for long-time integration of orbital problems. Appl. Math. Lett. 22(10), 1616–1621 (2009)CrossRefGoogle Scholar
  78. 78.
    Kalogiratou Z., Monovasilis T., Simos T.E.: A fifth-order symplectic trigonometrically fitted partitioned Runge-Kutta method. International Conference on Numerical Analysis and Applied Mathematics, SEP 16–20, 2007 Corfu, GREECE, Numerical Analysis and Applied Mathematics. AIP Conference Proceedings 936, 313–317 (2007)Google Scholar
  79. 79.
    Monovasilis T., Kalogiratou Z., Simos T.E.: Families of third and fourth algebraic order trigonometrically fitted symplectic methods for the numerical integration of Hamiltonian systems. Comput. Phys. Commun. 177(10), 757–763 (2007)CrossRefGoogle Scholar
  80. 80.
    Monovasilis T., Simos T.E.: Symplectic methods for the numerical integration of the Schrödinger equation. Comput. Mater. Sci. 38(3), 526–532 (2007)CrossRefGoogle Scholar
  81. 81.
    Monovasilis T., Kalogiratou Z., Simos T.E.: Computation of the eigenvalues of the Schrödinger equation by symplectic and trigonometrically fitted symplectic partitioned Runge-Kutta methods. Phys. Lett. A 372(5), 569–573 (2008)CrossRefGoogle Scholar
  82. 82.
    Monovasilis T., Kalogiratou Z., Simos T.E.: Symplectic Partitioned Runge-Kutta methods with minimal phase-lag. Comput. Phys. Commun. 181(7), 1251–1254 (2010)CrossRefGoogle Scholar
  83. 83.
    Vigo-Aguiar J., Simos T.E.: Family of twelve steps exponential fitting symmetric multistep methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 32(3), 257–270 (2002)CrossRefGoogle Scholar
  84. 84.
    Raptis A.D., Allison A.C.: Exponential—fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 14, 1–5 (1978)CrossRefGoogle Scholar
  85. 85.
    Raptis A.D.: Exponentially-fitted solutions of the eigenvalue Shrödinger equation with automatic error control. Comput. Phys. Commun. 28, 427–431 (1983)CrossRefGoogle Scholar
  86. 86.
    Ixaru L.Gr., Rizea M.: A numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun. 19, 23–27 (1980)CrossRefGoogle Scholar
  87. 87.
    Kalogiratou Z., Simos T.E.: A P-stable exponentially-fitted method for the numerical integration of the Schrödinger equation. Appl. Math. Comput. 112, 99–112 (2000)CrossRefGoogle Scholar
  88. 88.
    Avdelas G., Kefalidis E., Simos T.E.: New P-stable eighth algebraic order exponentially-fitted methods for the numerical integration of the Schrödinger equation. J. Math. Chem 31(4), 371–404 (2002)CrossRefGoogle Scholar
  89. 89.
    Simos T.E.: A family of trigonometrically-fitted symmetric methods for the efficient solution of the Schrödinger equation and related problems. J. Math. Chem. 34(1–2), 39–58 (2003)CrossRefGoogle Scholar
  90. 90.
    Simos T.E.: Exponentially—fitted multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 36(1), 13–27 (2004)CrossRefGoogle Scholar
  91. 91.
    Simos T.E.: A four-step exponentially fitted method for the numerical solution of the Schrödinger equation. J. Math. Chem. 40(3), 305–318 (2006)CrossRefGoogle Scholar
  92. 92.
    Simos T.E.: A family of four-step trigonometrically-fitted methods and its application to the Schrodinger equation. J. Math. Chem. 44(2), 447–466 (2009)Google Scholar
  93. 93.
    Simos T.E.: Exponentially and Trigonometrically Fitted Methods for the Solution of the Schrd̈inger Equation. Acta Appl. Math. 110(3), 1331–1352 (2010)CrossRefGoogle Scholar
  94. 94.
    Anastassi Z.A., Simos T.E.: A family of two-stage two-step methods for the numerical integration of the Schrödinger equation and related IVPs with oscillating solution. J. Math. Chem. 45(4), 1102–1129 (2009)CrossRefGoogle Scholar
  95. 95.
    Psihoyios G., Simos T.E.: Sixth algebraic order trigonometrically fitted predictor-corrector methods for the numerical solution of the radial Schrödinger equation. J. Math. Chem. 37(3), 295–316 (2005)CrossRefGoogle Scholar
  96. 96.
    Psihoyios G., Simos T.E.: The numerical solution of the radial Schrödinger equation via a trigonometrically fitted family of seventh algebraic order Predictor-Corrector methods. J. Math. Chem. 40(3), 269–293 (2006)CrossRefGoogle Scholar
  97. 97.
    Wang Z.: P-stable linear symmetric multistep methods for periodic initial-value problems. Comput. Phys. Commun. 171(3), 162–174 (2005)CrossRefGoogle Scholar
  98. 98.
    Simos T.E.: A new explicit Bessel and Neumann fitted eighth algebraic order method for the numerical solution of the Schrödinger equation. J. Math. Chem 27(4), 343–356 (2000)CrossRefGoogle Scholar
  99. 99.
    Anastassi Z.A., Simos T.E.: New trigonometrically fitted six-step symmetric methods for the efficient solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 60(3), 733–752 (2008)Google Scholar
  100. 100.
    Anastassi Z.A., Simos T.E.: A six-step P-stable trigonometrically-fitted method for the numerical integration of the radial Schrödinger equation. MATCH Commun. Math. Comput. Chem. 60(3), 803–830 (2008)Google Scholar
  101. 101.
    Anastassi Z.A., Simos T.E.: A family of two-stage two-step methods for the numerical integration of the Schrödinger equation and related IVPs with oscillating solution. J. Math. Chem. 45(4), 1102–1129 (2009)CrossRefGoogle Scholar
  102. 102.
    Simos T.E.: Stabilization of a four-step exponentially-fitted method and its application to the Schrödinger equation. Int. J. Mod. Phys C 18(3), 315–328 (2007)CrossRefGoogle Scholar
  103. 103.
    Simos T.E.: P-stability, trigonometric-fitting and the numerical solution of the radial Schrödinger equation. Comput. Phys. Commun. 180(7), 1072–1085 (2009)CrossRefGoogle Scholar
  104. 104.
    Panopoulos G.A., Anastassi Z.A., Simos T.E.: Two optimized symmetric eight-step implicit methods for initial-value problems with oscillating solutions. J. Math. Chem. 46(2), 604–620 (2009)CrossRefGoogle Scholar
  105. 105.
    Psihoyios G., Simos T.E.: Trigonometrically fitted predictor-corrector methods for IVPs with oscillating solutions. J. Comput. Appl. Math. 158(1), 135–144 (2003)CrossRefGoogle Scholar
  106. 106.
    Sakas D.P., Simos T.E.: Trigonometrically-fitted multiderivative methods for the numerical solution of the radial Schrödinger equation. MATCH Commun. Math. Comput. Chem. 53(2), 299–320 (2005)Google Scholar
  107. 107.
    Psihoyios G., Simos T.E.: A family of fifth algebraic order trigonometrically fitted P-C schemes for the numerical solution of the radial Schrödinger equation. MATCH Commun. Math. Comput. Chem. 53(2), 321–344 (2005)Google Scholar
  108. 108.
    Simos T.E.: Multiderivative methods for the numerical solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 50, 7–26 (2004)Google Scholar
  109. 109.
    Van de Vyver H.: Efficient one-step methods for the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 60(3), 711–732 (2008)Google Scholar
  110. 110.
    Simos T.E.: Dissipative trigonometrically-fitted methods for linear second-order IVPs with oscillating solution. Appl. Math. Lett. 17(5), 601–607 (2004)CrossRefGoogle Scholar
  111. 111.
    Stavroyiannis S., Simos T.E.: Optimization as a function of the phase-lag order of nonlinear explicit two-step P-stable method for linear periodic IVPs. Appl. Numer. Math. 59(10), 2467–2474 (2009)CrossRefGoogle Scholar
  112. 112.
    Stavroyiannis S., Simos T.E.: A nonlinear explicit two-step fourth algebraic order method of order infinity for linear periodic initial value problems. Comput. Phys. Commun. 181(8), 1362–1368 (2010)CrossRefGoogle Scholar
  113. 113.
    Anastassi Z.A., Simos T.E.: Numerical multistep methods for the efficient solution of quantum mechanics and related problems. Phys. Reports 482, 1–240 (2009)CrossRefGoogle Scholar
  114. 114.
    Vujasin R., Sencanski M., Radic-Peric J., Peric M.: A comparison of various variational approaches for solving the one-dimensional vibrational Schrödinger equation. MATCH Commun. Math. Comput. Chem. 63(2), 363–378 (2010)Google Scholar
  115. 115.
    Simos T.E., Williams P.S.: On finite difference methods for the solution of the Schrödinger equation. Comput. Chem. 23, 513–554 (1999)CrossRefGoogle Scholar
  116. 116.
    Ixaru L.Gr., Rizea M.: Comparison of some four-step methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 38(3), 329–337 (1985)CrossRefGoogle Scholar
  117. 117.
    Vigo-Aguiar J., Simos T.E.: Review of multistep methods for the numerical solution of the radial Schrödinger equation. Int. J. Quantum Chem. 103(3), 278–290 (2005)CrossRefGoogle Scholar
  118. 118.
    Simos T.E., Zdetsis A.D., Psihoyios G., Anastassi Z.A.: Special issue on mathematical chemistry based on papers presented within ICCMSE 2005 Preface. J. Math. Chem. 46(3), 727–728 (2009)CrossRefGoogle Scholar
  119. 119.
    Simos T.E., Psihoyios G., Anastassi Z.: Preface, proceedings of the international conference of computational methods in sciences and engineering 2005. Math. Comput. Model 51(3–4), 137–137 (2010)CrossRefGoogle Scholar
  120. 120.
    Simos T.E., Psihoyios G.: Special issue: the international conference on computational methods in sciences and engineering 2004—preface. J. Comput. Appl. Math. 191(2), 165–165 (2006)CrossRefGoogle Scholar
  121. 121.
    T.E. Simos, G. Psihoyios, Special issue—selected papers of the international conference on computational methods in sciences and engineering (ICCMSE 2003) Kastoria, Greece, 12–16 September 2003—Preface. J. Comput. Appl. Math. 175(1), IX–IX (2005)Google Scholar
  122. 122.
    T.E. Simos, J. Vigo-Aguiar, Special Issue–Selected Papers from the Conference on Computational and Mathematical Methods for Science and Engineering (CMMSE-2002)—Alicante University, Spain, 20–25 September 2002—Preface. J. Comput. Appl. Math. 158(1), IX–IX (2003)Google Scholar
  123. 123.
    T.E. Simos, Ch. Tsitouras, I. Gutman, Preface for the special issue numerical methods in chemistry. MATCH Commun. Math. Comput. Chem. 60(3) (2008)Google Scholar
  124. 124.
    Simos T.E., Gutman I.: Papers presented on the international conference on computational methods in sciences and engineering (Castoria, Greece, September 12–16, 2003). MATCH Commun. Math. Comput. Chem 53(2), A3–A4 (2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mathematics, College of SciencesKing Saud UniversityRiyadhSaudi Arabia
  2. 2.AthensGreece
  3. 3.Laboratory of Computational Sciences, Department of Computer Science and Technology, Faculty of Sciences and TechnologyUniversity of PeloponneseTripolisGreece

Personalised recommendations