Advertisement

Journal of Mathematical Chemistry

, Volume 49, Issue 7, pp 1416–1423 | Cite as

Rational groups and integer-valued characters of Thompson group Th

  • Hesam Sharifi
Original Paper

Abstract

According to the main result of W. Feit and G. M. Seitz (Illinois J Math 33(1):103–131, 1988), the Thompson group Th is non-rational or unmatured group (S. Fujita in Bull Chem Soc Jpn 71:2071–2080, 1998). Using the concept of markaracter tables proposed by S. Fujita (Bull Chem Soc Jpn 71:1587–1596, 1998), we are able to obtain tables of integer-valued characters for finite unmatured groups. In this paper, the integer-valued character for Thompson group is successfully derived for the first time.

Keywords

Rational group Integer-valued characters Matured groups Dominant classes Markaracter Thompson group 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Conway J.H., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A.: ATLAS of finite groups. Oxford University Press (Clarendon), Oxford (1985)Google Scholar
  2. 2.
    Darafsheh M.R., Moghani A., Naghdi Sedeh S.: Group theory for tetramethylethylene II. Acta Chim. Slov. 55, 602–607 (2008)Google Scholar
  3. 3.
    Feit W., Seitz G.M.: On finite rational groups and related topics. Illinois J. Math. 33(1), 103–131 (1988)Google Scholar
  4. 4.
    Fujita S.: Diagrammatical approach to molecular symmetry and enumeration of stereoisomers. Croat. Chem. ACTA, CCACAA 81(2), A27–A28 (2008)Google Scholar
  5. 5.
    Fujita S.: Inherent automorphism and \({\mathbb{Q}}\) -conjugacy character tables of finite groups, an application to combinatorial enumeration of isomers. Bull. Chem. Soc. Jpn. 71, 2309–2321 (1998)CrossRefGoogle Scholar
  6. 6.
    Fujita S.: Direct subduction of \({\mathbb{Q}}\) -conjugacy representations to give characteristic monomials for combinatorial enumeration. Theor. Chem. Acc. 99, 404–410 (1998)CrossRefGoogle Scholar
  7. 7.
    Fujita S.: Dominant representations and a markaracter table for a group of finite order. Theor. Chim. Acta. 91, 291–314 (1995)Google Scholar
  8. 8.
    Fujita S.: Enumeration of non-rigid molecules by means of unit subduced cycle indices. Theor. Chim. Acta. 77, 307–321 (1990)CrossRefGoogle Scholar
  9. 9.
    Fujita S.: The unit-subduced-cycle-index methods and the characteristic-monomial method. Their relationship as group-theoretical tools for chemical combinatorics. J. Math. Chem. 30(3), 249–270 (2001)CrossRefGoogle Scholar
  10. 10.
    Fujita S.: Mark tables and \({\mathbb{Q}}\) -conjugacy character tables for cyclic groups. An application to combinatorial enumeration. Bull. Chem. Soc. Jpn. 71, 1587–1596 (1998)CrossRefGoogle Scholar
  11. 11.
    Fujita S.: Maturity of finite groups. An application to combinatorial enumeration of isomers. Bull. Chem. Soc. Jpn. 71, 2071–2080 (1998)CrossRefGoogle Scholar
  12. 12.
    Fujita S.: A simple method for enumeration of non-rigid isomers. An application of characteristic monomials. Bull. Chem. Soc. Jpn. 72, 2403–2407 (1999)CrossRefGoogle Scholar
  13. 13.
    GAP, Groups: Algorithms and Programming, Lehrstuhl De für Mathematik. RWTH, Aachen (1995)Google Scholar
  14. 14.
    Kerber A., Thurlings K.: Combinatorial Theory. Springer, Berlin (1982)Google Scholar
  15. 15.
    Kerber A.: Applied Finite Group Actions. Springer, Berlin (1999)Google Scholar
  16. 16.
    Kletzing D.: Structure and Representations of \({\mathbb{Q}}\) -Group, Lecture Notes in Math. 1084. Springer, Berlin (1984)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mathematics Faculty of ScienceShahed UniversityTehranIran

Personalised recommendations