Skip to main content
Log in

Topographical distance matrices for porous arrays

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 30 March 2010

Abstract

The topographical Wiener index is calculated for two-dimensional graphs describing porous arrays, including bee honeycomb. For tiling in the plane, we model hexagonal, triangular, and square arrays and compare with topological formulas for the Wiener index derived from the distance matrix. The normalized Wiener indices of C4, T13, and O(4), for hexagonal, triangular, and square arrays are 0.993, 0.995, and 0.985, respectively, indicating that the arrays have smaller bond lengths near the center of the array, since these contribute more to the Wiener index. The normalized Perron root (the first eigenvalue, λ 1), calculated from distance/distance matrices describes an order parameter, \({\phi=\lambda_1/n}\) , where \({\phi= 1}\) for a linear graph and n is the order of the matrix. This parameter correlates with the convexity of the tessellations. The distributions of the normalized distances for nearest neighbor coordinates are determined from the porous arrays. The distributions range from normal to skewed to multimodal depending on the array. These results introduce some new calculations for 2D graphs of porous arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wiener H.: Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69, 17–20 (1947)

    Article  CAS  Google Scholar 

  2. Hosoya H.: Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons. Bull. Chem. Soc. Jpn. 44, 2332–2339 (1971)

    Article  CAS  Google Scholar 

  3. B. Bogdanov, S. Nikolic, N. Trinajstic, On the three-dimensional Wiener number. J. Math. Chem. 3, 299–309 (1989)

    Article  CAS  Google Scholar 

  4. Mihalic Z., Trinajstic N.: The algebraic modeling of chemical structures: on the development of three-dimensional molecular descriptors. J. Mol. Struct. (Theochem) 232, 65–78 (1991)

    Article  Google Scholar 

  5. Nikolic S., Trinajstic N., Mihalic Z., Carter S.: On the geometric-distance matrix and the corresponding structural invariants of molecular systems. Chem. Phys. Lett. 179, 21–28 (1991)

    Article  CAS  Google Scholar 

  6. Mihalic Z., Nikolic S., Trinajstic N.: Comparative study of molecular descriptors derived from the distance matrix. J. Chem. Inf. Comput. Sci. 32, 28–37 (1992)

    CAS  Google Scholar 

  7. Masuda H., Asoh H., Watanabe M., Nishio K., Nakao M., Tamamura T.: Square and triangular nanohole array architectures in anodic alumina. Adv. Mater. 13(3), 189–192 (2001)

    Article  CAS  Google Scholar 

  8. Toth L.F.: Regular Figures, pp. 21–38. MacMillan, New York (1964)

    Google Scholar 

  9. The website of Image SXM: http://www.liv.ac.uk/~sdb/ImageSXM

  10. Mohar B., Pisanski T.: How to compute the Wiener index of a graph. J. Math. Chem. 2, 267–277 (1988)

    Article  CAS  Google Scholar 

  11. Juvan M., Mohar B.: Bond contributions to the Wiener index. J. Chem. Inf. Comput. Sci. 35, 217–219 (1995)

    CAS  Google Scholar 

  12. Choi J., Luo Y., Wehrspohn R.B., Hillebrand R., Schilling J., Gösele U.: Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers. J. Appl. Phys. 94(8), 4757–4762 (2003)

    Article  CAS  Google Scholar 

  13. Krishnan R., Nguyen H.Q., Thompson C.V., Choi W.K., Foo Y.L.: Wafer-level ordered arrays of aligned carbon nanotubes with controlled size and spacing on silicon. Nanotechnology 16, 841–845 (2005)

    Article  CAS  Google Scholar 

  14. Hulteen J.C., Treichel D.A., Smith M.T., Duval M.L., Jensen T.R., Van Duyne R.P.: Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays. J. Phys. Chem. B 103, 3854–3863 (1999)

    Article  CAS  Google Scholar 

  15. Randic M., Vracko M.: On the similarity of DNA primary sequences. J. Chem. Inf. Comput. Sci. 40, 599–606 (2000)

    CAS  Google Scholar 

  16. Randic M., Kleiner A.F., DeAlba L.M.: Distance/distance matrices. J. Chem. Inf. Comput. Sci. 34, 277–286 (1994)

    CAS  Google Scholar 

  17. The website for Maxima: http://www.maxima.sourceforge.net

  18. Contact one of the authors at andrej.vodopivec@gmail.com for more information on the Lisp program

  19. Kaatz F.H., Bultheel A., Egami T.: Order parameters from image analysis: a honeycomb example. Naturwissenschaften 95(11), 1033–1040 (2008)

    Article  CAS  Google Scholar 

  20. Kaatz F.H., Bultheel A., Egami T.: Real and reciprocal space order parameters for porous arrays from image analysis. J. Mater. Sci. 44, 40–46 (2009)

    Article  CAS  Google Scholar 

  21. Shiu W.C., Lam P.C.B., Poon K.K.: On Wiener numbers of polygonal nets. Discret. Appl. Math. 122, 251–261 (2002)

    Article  Google Scholar 

  22. Gutman I., Klavzar S., Rajapakse A.: Average distances in square-cell configurations. Int. J. Quan. Chem. 76, 611–617 (1999)

    Article  Google Scholar 

  23. Yang B.Y., Yeh Y.N.: A crowning moment for Wiener indices. Stud. Appl. Math. 112, 333–340 (2004)

    Article  Google Scholar 

  24. Shiu W.C., Lam P.C.B.: The Wiener number of the hexagonal net. Discret. Appl. Math. 73, 101–111 (1997)

    Article  Google Scholar 

  25. Hales T.C.: The honeycomb conjecture. Discret. Comput. Geom. 25, 1–22 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Forrest H. Kaatz.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10910-010-9672-8

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vodopivec, A., Kaatz, F.H. & Mohar, B. Topographical distance matrices for porous arrays. J Math Chem 47, 1145–1153 (2010). https://doi.org/10.1007/s10910-009-9651-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-009-9651-0

Keywords

Navigation