Journal of Mathematical Chemistry

, Volume 47, Issue 2, pp 790–807 | Cite as

Approximate critical conditions in thermal explosion theory for a two-step kinetic model

  • S. O. Ajadi
  • O. Nave
Original Paper


Approximate critical conditions for a thermal explosion problem is developed for a two-step reactions based on theories of Semenov and Frank-Kamenetskii. The aim is to examine the contributions of the radical termination step and the temperature dependent pre-exponential factor on the critical parameters within the framework of classical stationary and non-stationary theories. In the non-stationary case, a more general expression for the critical Semenov parameter (Ψ cr ) and critical temperature (θ cr ) were obtained by asymptotic procedure. In the stationary case, numerical estimates for the critical Frank-Kamenetskii parameter (δ cr ) and the critical temperature (θ cr ) were obtained by variational method technique. It was observed that the Semenov and Frank-Kamenetskii parameters are greatly influenced by the termination step and the variable pre-exponential factor. Apart from elucidating hitherto unknown features in the theory of thermal explosion, the results are more general as some known results are easily recovered.


Thermal explosion Asymptotic procedure Two-step reaction Radical termination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ajadi S.O., Gol’dshtein V.: Critical behaviour in a three step reactions kinetics model. Combust. Theory Model. 13, 1–16 (2009)CrossRefGoogle Scholar
  2. 2.
    Ajadi S.O., Okoya S.S.: The effect of variable pre-exponential factors on the ignition time of a homogeneous system. Int. Comm. Heat Mass Transf. 31(1), 143–150 (2004)CrossRefGoogle Scholar
  3. 3.
    S.O. Ajadi, V. Gol’dshtein , The structure of the thermal explosion limit with variable pre-exponential factor. Russian J. Phys. Chem. B (Accepted) (2009)Google Scholar
  4. 4.
    Adler J., Enig J.W.: The critical conditions in thermal explosion theory with reactant consumption. Combust. Flame 8, 97–103 (1964)CrossRefGoogle Scholar
  5. 5.
    Babushok V.I., Gol’dshtein V.: Structure of the thermal explosion limit. Combust. Flame 72, 221–224 (1988)CrossRefGoogle Scholar
  6. 6.
    Babushok V.I., Gol’dshtein V., Sobolev V.A.: Critical condition for thermal explosion with reactant consumption. Combust. Sci. Tech. 70, 81–89 (1990)CrossRefGoogle Scholar
  7. 7.
    Boyer E., Kuo K.K.: Modelling of nitromethane flame structure and burning behaviour. Proc. Combust. Inst. 31, 2045–2053 (2007)CrossRefGoogle Scholar
  8. 8.
    Gray P.: Critical behaviour in chemically reactive systems: I-difficulties with the Semenov theory. Combust. Flame 21, 313–316 (1973)CrossRefGoogle Scholar
  9. 9.
    Glarborg P., Bendtsen A.B., Miller J.A.: Modeling of nitromethane flame structure and burning behavior. Int. J. Chem. Kinet. 31(9), 591–602 (1999)CrossRefGoogle Scholar
  10. 10.
    Griffiths J.F., Hasegawa K.: Ignition, self heating and convection effects during the spontaneous decomposition of methyl nitrate. Combust. Flame 45, 53–66 (1982)CrossRefGoogle Scholar
  11. 11.
    Griffiths J.F., Barnard J.A.: Flame and Combustion. Blackie Academic and Professional, 3rd edn. imprint of Chapman and Hall, London (1995)Google Scholar
  12. 12.
    Guirguis R., Hsu D., Bogan D., Oran E.: A mechanism for ignition of high-temperature gaseous nitromethane—the key role of the nitro Group in chemical explosives. Combust. Flame 61, 51–62 (1985)CrossRefGoogle Scholar
  13. 13.
    Kassoy D.R., Linan A.: The influence of reactant consumption on the critical conditions for homogeneous thermal explosion. Q. J. Mech. Appl. Math 31, 99–112 (1978)CrossRefGoogle Scholar
  14. 14.
    Lacey A.A.: Critical behaviour of homogeneous reacting system with large activation energy. Int. J. Eng. Sci. 21(5), 501–515 (1983)CrossRefGoogle Scholar
  15. 15.
    Merzhanov A.G., Dubovitskii F.I.: Present state of the theory of thermal explosions. Russ. Chem. Rev. 35, 278–292 (1966)CrossRefGoogle Scholar
  16. 16.
    Mishchenko E.F., Rozov N.K.: Differential Equations with Small Parameters and Relaxation. Plenum Press, New York and London (1980)Google Scholar
  17. 17.
    Morbidelli M., Varma A.: A generalised criterion for parametric sensitivity application to thermal explosion theory. Chem. Eng. Sci. 43, 91–102 (1988)CrossRefGoogle Scholar
  18. 18.
    Peters N.: Fifteen Lecture on Laminar and Turbulent Combustion. Ercoftac Summer School, Aachen, Germany (1992)Google Scholar
  19. 19.
    Thomas P.H.: Effect of reactant consumption on the induction period and critical condition for a thermal explosion. Proc. R. Soc. Lond. A 4 262(1309), 192–206 (1961)CrossRefGoogle Scholar
  20. 20.
    Todes G.M., Melentiese P.V.: Theory of thermal explosion. J. Phys. Chem. 13(7), 52–58 (1939)Google Scholar
  21. 21.
    Wu H., Morbidelli M., Varma A.: An Approximate criterion for reactor thermal runaway. Chem. Eng. Sci. 53(18), 3341–3344 (1988)Google Scholar
  22. 22.
    Ya Zeldovich B., Barenblatt G.I., Librovich V.B., Makhviladze G.M.: The Mathematical Theory of Combustion and Explosion. Consultants Bureau, New York (1985)Google Scholar
  23. 23.
    M.I. Zharkov, E.F. Mishchenko, N.K. Rozov, On some special functions and constants appeared in theory of relaxation oscillations. Proc. Acad. USSR 261, No. 6 (in Russian) (1981)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of MathematicsBen-Gurion University of NegevBeer-ShevaIsrael
  2. 2.Department of MathematicsObafemi Awolowo UniversityIle IfeNigeria

Personalised recommendations