Journal of Mathematical Chemistry

, Volume 46, Issue 3, pp 763–769 | Cite as

Modeling the dissociation of carbon dioxide and methane hydrate using the phase field theory

Original Paper


Hydrate that is exposed to fluid phases which are undersaturated with respect to equilibrium with the hydrate will dissociate due to gradients in chemical potential. Kinetic rates of methane hydrate dissociation towards pure water and seawater is important relative to hydrate reservoirs that are partly exposed towards the ocean floor. Corresponding results for carbon dioxide hydrate is important relative to hydrate sealing effects related to storage of carbon dioxide in cold aquifers. In this work we apply a phase field theory to the prediction of carbon dioxide hydrate and methane hydrate dissociation towards pure water at various conditions, some of which are inside and some which are outside the stability regions of the hydrates with respect to temperature and pressure. As expected from the differences in water solubility the methane hydrate dissolves significantly slower towards pure water than carbon dioxide hydrate.


Gas hydrate Phase-field theory Carbon dioxide Dissociation Methane 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Svandal A., Kvamme B., Grànàsy L., Pusztai T.: The influence of diffusion on hydrate growth. J. Phase. Equilib. Diff. 26(5), 534–538 (2005)Google Scholar
  2. 2.
    Svandal A., Kvamme B., Grànàsy L., Pusztai T., Buanes T., Hove J.: The phase field theory applied to CO2 and CH4 hydrate. J. Cryst. Growth 287, 486–490 (2006)CrossRefGoogle Scholar
  3. 3.
    Kvamme B., Graue A., Aspenes E., Kuznetsova T., Grànàsy L., Tòth G., Pusztai T., Tegze G.: Kinetics of solid hydrate formation by carbon dioxide; phase field theory of hydrate nucleation and magnetic resonance imaging. Phys. Chem. Chem. Phys. 6, 2327 (2004)CrossRefGoogle Scholar
  4. 4.
    Grànàsy L., Börzsönyi T., Pusztai T.: Nucleation and bulk crystallization in binary phase field theory. Phys. Rev. Lett. 88, 206105 (2002)CrossRefGoogle Scholar
  5. 5.
    Grànàsy L., Pusztai T., Warren J.A.: Modeling polycrystalline solidification using phase field theory. J. Phys. Condens. Mater. 16, R1205–R1235 (2004)CrossRefGoogle Scholar
  6. 6.
    Grànàsy L., Pusztai T., Börzsönyi T., Warren J.A., Douglas J.F.: A general mechanism of polycrystalline growth. Nat. Mater. 3, 645–650 (2004)CrossRefGoogle Scholar
  7. 7.
    Warren J.A., Boettinger W.J.: Prediction of dendritic growth and microsegragation patterns in a binary alloy using the phase-field method. Acta. Metall. Mater. 43, 689–703 (1995)CrossRefGoogle Scholar
  8. 8.
    Wang S.L., Sekerka R.F., Wheeler A.A., Murray B.T., Coriell S.R., Braun R.J., McFadden G.B.: Thermodynamically-consistent phase-field models for solidification. Phys. D 69, 189–200 (1993)CrossRefGoogle Scholar
  9. 9.
    Hardy S.C.: A grain boundary groove measurement of the surface tension between ice and water. Philos. Mag. 35, 471 (1977)CrossRefGoogle Scholar
  10. 10.
    Svandal A., Kuznetsova T., Kvamme B.: Thermodynamic properties and phase transitions in the H2O/CO2/CH4 system. Phys. Chem. Chem. Phys. 8, 1707–1713 (2006)CrossRefGoogle Scholar
  11. 11.
    Tohidi B., Anderson R., Clenell M.B., Burgass R.W., Biderkab A.B.: Visual observation of a gas-hydrateformation and dissociation in synthetic porous media by means of glass micromodels. Geology 29, 867–870 (2001)CrossRefGoogle Scholar
  12. 12.
    Skovborg P., Rasmussen P.: A mass transport limited model for the growth of methane and ethane gas hydrates. Chem. Eng. Sci. 49, 1131–1143 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Physics and TechnologyUniversity of BergenBergenNorway

Personalised recommendations