Advertisement

Journal of Mathematical Chemistry

, Volume 46, Issue 2, pp 532–549 | Cite as

Electronic states in ordered and disordered quantum networks: with applications to graphene and to boron nanotubes

  • N. H. March
  • G. G. N. Angilella
Original Paper

Abstract

The idea behind the original quantum network (QN) model is simple enough. One joins each atom to its nearest neighbours, and then treats electrons (though quantum mechanically of course) as though they flowed through one-dimensional wires as in an electrical circuit obeying Kirchhoff’s Laws at every node. Here we will begin with two periodic systems: namely a single graphene layer, which has recently been produced experimentally, and a two-dimensional sheet of boron atoms. This will be followed by a discussion of B nanotubes, using the simplest QN model, supplemented by comparison of these results with very recent work of other authors using density functional theory. Then the disordered quantum network (DQN) model will be treated in some detail. First of all, the main, physically motivated, steps by which Dancz, Edwards and March passed from the DQN model to the Boltzmann equation will be set out. They will then be related to substantial progress made on the mathematical solution of the DQN model by a number of authors; again a substantial part of this work invoking the Boltzmann equation.

Keywords

Graphene Quantum networks Boron nanotubes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Platt J.R., Ruedenberg K., Scherr C.W., Ham N.S., Labhart H., Lichten W.: Free-Electron Theory of Conjugated Molecules: A Source Book. Wiley, New York (1964)Google Scholar
  2. 2.
    Pauling L.: J. Chem. Phys. 4, 673 (1936)CrossRefGoogle Scholar
  3. 3.
    Coulson C.A.: Proc. Phys. Soc. A 67, 608 (1954)CrossRefGoogle Scholar
  4. 4.
    Coulson C.A.: Proc. Phys. Soc. A 68, 1129 (1955)CrossRefGoogle Scholar
  5. 5.
    Montroll E.W.: J. Math. Phys. 11, 635 (1970)CrossRefGoogle Scholar
  6. 6.
    Montroll E.W.: J. Phys. Chem. Solids 34, 597 (1973)CrossRefGoogle Scholar
  7. 7.
    Klein D.J., March N.H.: J. Mol. Struct. (Theochem) 337, 257 (1995)CrossRefGoogle Scholar
  8. 8.
    Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A.: Science 306, 666 (2004)CrossRefGoogle Scholar
  9. 9.
    Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Katsnelson M.I., Grigorieva I.V., Dubonos S.V., Firsov A.A.: Nature 438, 197 (2005)CrossRefGoogle Scholar
  10. 10.
    Novoselov K.S., Jiang D., Schedin F., Booth T.J., Khotkevich V.V., Morozov S.V., Geim A.K.: Proc. Natl. Acad. Sci. 102, 10451 (2005)CrossRefGoogle Scholar
  11. 11.
    Katsnelson M.I.: Mater. Today 10, 20 (2007)CrossRefGoogle Scholar
  12. 12.
    Kuchment P., Post O.: Commun. Math. Phys. 275, 805 (2007)CrossRefGoogle Scholar
  13. 13.
    Dancz J., Edwards S.F., March N.H.: J. Phys. C 6, 873 (1973)CrossRefGoogle Scholar
  14. 14.
    Germinet F., Hislop P.D., Klein A.: J. Eur. Math. Soc. 9, 577 (2007)Google Scholar
  15. 15.
    Aizenman M., Elgart A., Naboko S., Schenker J.H., Stolz G.: Invent. Math. 163, 343 (2005)CrossRefGoogle Scholar
  16. 16.
    Aizenman M., Sims R., Warzel S.: Probab. Theory Rel. Fields 136, 363 (2006)CrossRefGoogle Scholar
  17. 17.
    Aizenman M., Warzel S.: Moscow Math. J. 5, 499 (2005)Google Scholar
  18. 18.
    I. Veselić, Contemp. Math. 340, 97 (2004), preprint arXiv:math-ph/0307062 Google Scholar
  19. 19.
    Exner P., Helm M., Stollmann P.: Rev. Math. Phys. 19, 923 (2006)CrossRefGoogle Scholar
  20. 20.
    Kostrykin V., Schrader R.: Waves Random Media 14, S75 (2004)CrossRefGoogle Scholar
  21. 21.
    Ringwood G.A.: J. Math. Phys. 22, 96 (1981)CrossRefGoogle Scholar
  22. 22.
    Budgor A.B.: J. Math. Phys. 17, 1538 (1976)CrossRefGoogle Scholar
  23. 23.
    Leys F.E., Amovilli C., March N.H.: J. Chem. Inf. Comput. Sci. 44, 122 (2004)Google Scholar
  24. 24.
    Saito R., Dresselhaus G., Dresselhaus M.S.: Physical Properties of Carbon Nanotubes. Imperial College Press, London (1998)Google Scholar
  25. 25.
    Leys F.E., Amovilli C., March N.H.: J. Math. Chem. 36, 93 (2004)CrossRefGoogle Scholar
  26. 26.
    A. Badanin, J. Brüning, E. Korotyaev, I. Lobanov (2007), preprint arXiv:0707.3909 Google Scholar
  27. 27.
    A. Badanin, J. Brüning, E. Korotyaev (2007), preprint arXiv:0707.3900 Google Scholar
  28. 28.
    Cabria I., Alonso J.A., López M.J.: Phys. Status Solidi (a) 203, 1105 (2006)CrossRefGoogle Scholar
  29. 29.
    Vosko S.H., Wilk L., Nusair M.: Can. J. Phys. 58, 1200 (1980)CrossRefGoogle Scholar
  30. 30.
    Perdew J.P., Chevary J.A., Vosko S.H., Jackson K.A., Pederson M.R., Singh D.J., Fiolhais C.: Phys. Rev. B 46, 6671 (1992)CrossRefGoogle Scholar
  31. 31.
    Ziman J.M.: J. Phys. C 6, L361 (1973)CrossRefGoogle Scholar
  32. 32.
    Dancz J., Edwards S.F.: J. Phys. C 6, 3413 (1973)CrossRefGoogle Scholar
  33. 33.
    Dancz J., Edwards S.F.: J. Phys. C 8, 2532 (1975)CrossRefGoogle Scholar
  34. 34.
    K. Ruedenberg, Ch. W. Scherr, J. Chem. Phys. 21, 1565 (1953), [22, 151 (1954)]Google Scholar
  35. 35.
    Scherr Ch.W.: J. Chem. Phys. 21, 1582 (1953)CrossRefGoogle Scholar
  36. 36.
    Platt J.R.: J. Chem. Phys. 21, 1597 (1953)CrossRefGoogle Scholar
  37. 37.
    Scherr Ch.W.: J. Chem. Phys. 21, 1413 (1953)CrossRefGoogle Scholar
  38. 38.
    Frisch H.L., Lloyd S.P.: Phys. Rev. 120, 1175 (1960)CrossRefGoogle Scholar
  39. 39.
    Halperin B.I.: Phys. Rev. 139, A104 (1965)CrossRefGoogle Scholar
  40. 40.
    Lloyd P.: J. Phys. C 2, 1717 (1969)CrossRefGoogle Scholar
  41. 41.
    Germinet F., Klein A.: Commun. Math. Phys. 222, 415 (2001)CrossRefGoogle Scholar
  42. 42.
    P. Stollmann, Caught by Disorder. Bound States in Disordered Media, Progress in Mathematicl Physics (Birkhäuser, Boston, 2001)Google Scholar
  43. 43.
    Avron J., Exner P., Last Y.: Phys. Rev. Lett. 72, 896 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Oxford UniversityOxfordUK
  2. 2.Department of PhysicsUniversity of AntwerpAntwerpBelgium
  3. 3.Dipartimento di Fisica e AstronomiaUniversità di CataniaCataniaItaly
  4. 4.CNISM, UdR CataniaCataniaItaly
  5. 5.INFN, Sez. CataniaCataniaItaly

Personalised recommendations