Skip to main content
Log in

Stability in generic mitochondrial models

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we use a variety of mathematical techniques to explore existence, local stability, and global stability of equilibria in abstract models of mitochondrial metabolism. The class of models constructed is defined by the biochemical description of the system—an electron transport chain coupled to a process of charge translocation across a membrane. The conclusions are based on the reaction network structure, and we make minimal assumptions on the kinetics of the reactions involved. In the absence of charge translocation these models have previously been shown to behave in a very simple manner with a single, globally stable equilibrium. We show that with charge translocation the conclusion about a unique equilibrium remains true, but local and global stability do not necessarily follow. The length of the chains proves to be important: For short electron transport chains it is possible to make claims about local and global stability of the equilibrium which are no longer valid for longer chains. Some particular conditions which ensure stability of the equilibrium for chains of arbitrary length are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Babcock G.T., Wikström M.: Oxygen activation and the conservation of energy in cell respiration. Nature 356, 301 (1992)

    Article  CAS  Google Scholar 

  2. R.H. Garrett, C.M. Grisham (eds.), Biochemistry (Saunders College Publishing, 1995)

  3. N. Bhagavan, Medical Biochemistry (Harcourt/Academic Press, 2002)

  4. D.G. Nicholls, S.J. Ferguson, Bioenergetics 3 (Academic Press, 2002)

  5. Belevich I., Verkhovsky M., Wikström M.: Proton-coupled electron transfer drives the proton pump of cytochrome c oxidase. Nature 440(6), 829 (2006)

    Article  CAS  Google Scholar 

  6. Banaji M.: A generic model of electron transport in mitochondria. J. Theor. Biol. 243(4), 501 (2006)

    Article  CAS  Google Scholar 

  7. Banaji M., Baigent S.: Electron transfer networks. J. Math. Chem. 43(4), 1355 (2008)

    Article  CAS  Google Scholar 

  8. Korzeniewski B.: Simulation of oxidative phosphorylation in hepatocytes. Biophys. Chem. 58, 215 (1996)

    Article  CAS  Google Scholar 

  9. Korzeniewski B., Zoladz J.A.: A model of oxidative phosphorylation in mammalian skeletal muscle. Biophys. Chem. 92, 17 (2001)

    Article  CAS  Google Scholar 

  10. Farmery A.D., Whiteley J.P.: A mathematical model of electron transfer within the mitochondrial respiratory cytochromes. J. Theor. Biol. 213, 197 (2001)

    Article  CAS  Google Scholar 

  11. Beard D.A.: A biophysical model of the mitochondrial respiratory system and oxidative phosphorylation. PLoS Comput. Biol. 1(4), e36 (2005)

    Article  CAS  Google Scholar 

  12. Jin Q., Bethke C.M.: Kinetics of electron transfer through the respiratory chain. Biophys. J. 83(4), 1797 (2002)

    Article  CAS  Google Scholar 

  13. De Leenheer P., Angeli D., Sontag E.: Monotone chemical reaction networks. J. Math. Chem. 41(3), 295 (2007)

    Article  CAS  Google Scholar 

  14. Brand M.D., Chien L., Diolez P.: Experimental discrimination between proton leak and redox slip during mitochondrial electron transport. Biochem. J. 297(1), 27 (1994)

    CAS  Google Scholar 

  15. Canton M., Luvisetto S., Schmehl I., Azzone G.: The nature of mitochondrial respiration and discrimination between membrane and pump properties. Biochem. J. 310, 477 (1995)

    CAS  Google Scholar 

  16. Banaji M., Donnell P., Baigent S.: P matrix properties, injectivity and stability in chemical reaction systems. SIAM J. Appl. Math. 67(6), 1523 (2007)

    Article  CAS  Google Scholar 

  17. Kellogg R.B.: On complex eigenvalues of M and P matrices. Numer. Math. 19, 70 (1972)

    Article  Google Scholar 

  18. Gale D., Nikaido H.: The Jacobian matrix and global univalence of mappings. Math. Ann. 159, 81 (1965)

    Article  Google Scholar 

  19. Feßler R.: A proof of the two-dimensional Markus-Yamabe stability conjecture. Ann. Polon. Math. 62, 45 (1995)

    Google Scholar 

  20. Glutsyuk A.A.: The complete solution of the Jacobian problem for vector fields on the plane. Russ. Math. Surv. 49(3), 185 (1994)

    Article  Google Scholar 

  21. Gutierrez C.: A solution to the bidimensional global asymptotic stability conjecture. Ann. Inst. H. Poincaré Anal. Non Linéaire 12, 627 (1995)

    Google Scholar 

  22. K. Ciesielski, On the Poincaré-Bendixson theorem. in Lecture Notes in Nonlinear Analysis, vol 3, eds. by W. Kryszewski, A. Nowakowski, Proceedings of the 3rd Polish Symposium on Nonlinear Analysis (2001)

  23. J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer-Verlag, 1983)

  24. Cima A., Essen A.V., Gasull A., Hubbers E., Manosas F.: A polynomial counterexample to the Markus-Yamabe conjecture. Adv. Math. 131(2), 453 (1997)

    Article  Google Scholar 

  25. Muldowney J.S.: Compound matrices and ordinary differential equations. Rocky Mt. J. Math. 20(4), 857 (1990)

    Article  Google Scholar 

  26. Li M.Y., Wang L.: A criterion for stability of matrices. J. Math. Anal. Appl. 225, 249 (1998)

    Article  Google Scholar 

  27. Scilab, A platform for numerical computation. Available at http://www.scilab.org/

  28. Kafri W.: Robust D-stability. Appl. Math. Lett. 15, 7 (2002)

    Article  Google Scholar 

  29. M. Hirsch, H. Smith, Monotone dynamical systems. in Handbook of Differential Equations: Ordinary Differential Equations, vol 2, eds. by A. Canada, P. Drabek, A. Fonda (Elsevier, 2005)

  30. D. Angeli, E. Sontag, Interconnections of monotone systems with steady-state characteristics. in Optimal Control, Stabilization and Nonsmooth Analysis, eds. by M.M.M. de Queiroz, P. Wolenski (Springer-Verlag, 2004)

  31. Angeli D., Sontag E.: Monotone control systems. IEEE Trans. Automat. Contr. 48, 1684 (2003)

    Article  Google Scholar 

  32. Li M.Y., Muldowney J.S.: Dynamics of differential equations on invariant manifolds. J. Differ. Equ. 168, 295 (2000)

    Article  Google Scholar 

  33. L. Allen, T.J. Bridges, Numerical exterior algebra and the compound matrix method. Tech. rep. University of Surrey (2001)

  34. Ström T.: On logarithmic norms. SIAM J. Numer. Anal. 12(5), 741 (1975)

    Article  Google Scholar 

  35. MAXIMA: A computer algebra system. Available at http://maxima.sourceforge.net

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Baigent.

Additional information

Funded by an EPSRC/MRC grant to the MIAS IRC (Grant Ref: GR/N14248/01).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donnell, P., Banaji, M. & Baigent, S. Stability in generic mitochondrial models. J Math Chem 46, 322–339 (2009). https://doi.org/10.1007/s10910-008-9464-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-008-9464-6

Keywords

Navigation