Advertisement

Journal of Mathematical Chemistry

, Volume 44, Issue 3, pp 913–916 | Cite as

Resonance structure counts in parallelogram-like benzenoids with holes

  • Sasan Karimi
  • Anthony Delgado
  • Marty Lewinter
Original Paper

Abstract

If a hexacyclic graph G represents a benzenoid, a perfect matching corresponds to a configuration of π-bonds. We present an algorithm for counting the number of configurations of π-bonds for parallelogram-like benzenoids with parallelogram-like holes by counting descending paths in a corresponding rectangular mesh with rectangular holes.

Keywords

Parallelogram-like benzenoid Holes Mesh 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balaban A.T. (1981) Rev. Roum. Chim. 26: 407–413Google Scholar
  2. 2.
    Balaban A.T., Harary F. (1968) Tetrahedron 24: 2505–2516CrossRefGoogle Scholar
  3. 3.
    Balaban A.T. (1969) Tetrahedron 25: 2949–2956CrossRefGoogle Scholar
  4. 4.
    Bonchev D., Balaban A.T. (1981) J. Chem. Inf. Comput. Sci. 21: 223–229CrossRefGoogle Scholar
  5. 5.
    Aihara J.I. (1993) Bull. Chem. Soc. Jpn. 66: 57–60CrossRefGoogle Scholar
  6. 6.
    Cyvin S.J., Cyvin B.N., Brunvoll J., Hosoya H., Zhang F., Klein D.J., Chen R., Polansky O.E. (1991) Monatsh. Chem. 122: 435–444CrossRefGoogle Scholar
  7. 7.
    Brunvoll J., Cyvin B.N., Cyvin S.J. (1987) J. Chem. Inf. Comput. Sci. 27: 14–21CrossRefGoogle Scholar
  8. 8.
    Brunvoll J., Cyvin B.N., Cyvin S.J., Gutman I., Tosic R., Kovacevic M. (1989) J. Mol. Struct. (Theochem.) 184: 165–177CrossRefGoogle Scholar
  9. 9.
    Karimi S., Lewinter M., Kalyanswamy S. (2008) J. Math. Chem. 43: 892–900CrossRefGoogle Scholar
  10. 10.
    Karimi S., Lewinter M., Kalyanswamy S. (2007) J. Math. Chem. 41: 59–61CrossRefGoogle Scholar
  11. 11.
    Karimi S., Lewinter M. (2006) J. Math. Chem. 39: 593–596CrossRefGoogle Scholar
  12. 12.
    Karimi S., Lewinter M. (2005) J. Math. Chem. 38: 103–106CrossRefGoogle Scholar
  13. 13.
    Bocchi T., Karimi S., Lewinter M. (2004) J. Math. Chem. 35: 339–344CrossRefGoogle Scholar
  14. 14.
    Karimi S., Lewinter M., Stauffer J. (2003) J. Math. Chem. 34: 297–301CrossRefGoogle Scholar
  15. 15.
    Buckley F., Lewinter M. (2003) A Friendly Introduction to Graph Theory. Prentice Hall, New JerseyGoogle Scholar
  16. 16.
    Rispoli F. (2001) Math. Mag. 74: 194–200CrossRefGoogle Scholar
  17. 17.
    P. Kasteleyn, Graph theory and crystal physics, in Graph Theory and Theoretical Physics, ed. by F. Harary (Academic Press, New York, 1967)Google Scholar
  18. 18.
    Trinajstic N. (1992) Chemical Graph Theory 2nd edn. CRC Press, Boca Raton, FLGoogle Scholar
  19. 19.
    Gordon M., Davison W.H.T. (1952) J. Chem. Phys. 20: 428–435CrossRefGoogle Scholar
  20. 20.
    M. Randic, Graph Theory, Combinatorics, and Applications, vol. 2 (Wiley-Interscience, New York, 1991), pp. 1001–1008Google Scholar
  21. 21.
    Gutman I., Cyvin S. (1989) Introduction to the Theory of Benzenoid Hydrocarbons. Springer-Verlag, BerlinGoogle Scholar
  22. 22.
    Sachs H. (1984) Combinatorica 4: 89–99CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Chemistry DepartmentQueensborough Community CollegeBaysideUSA
  2. 2.Purchase CollegePurchaseUSA
  3. 3.Math DepartmentPurchase CollegePurchaseUSA

Personalised recommendations