Advertisement

Journal of Mathematical Chemistry

, Volume 45, Issue 2, pp 538–543 | Cite as

On the path-Zagreb matrix

  • Damir Vukičević
  • Sonja Nikolić
  • Nenad Trinajstić
Original Paper

Abstract

The definition of the path-Zagreb matrix for (chemical) trees PZ and its generalization to any (molecular) graph is presented. Additionally, the upper bound of \({\log _2\left({{PZ}\left({G_n}\right)_{ij}}\right)}\) , where G n is a graph with n vertices is given.

Keywords

Zagreb matrices Path-Zagreb matrix Trees General graphs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gutman I., Trinajstić N.: Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17, 535–538 (1972)Google Scholar
  2. 2.
    Gutman I., Ruščić B., Trinajstić N., Wilcox C.F. Jr.: Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62, 3399–3405 (1975)CrossRefGoogle Scholar
  3. 3.
    Todeschini R., Consonni V.: Handbook of Molecular Descriptors. Weinheim, Wiley-VCH (2000)Google Scholar
  4. 4.
    Gutman I., Das K.C.: The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem. 50, 83–92 (2004)Google Scholar
  5. 5.
    Nikolić S., Kovačević G., Miličević A., Trinajstić N.: The Zagreb indices 30 years after. Croat. Chem. Acta 76, 113–124 (2003)Google Scholar
  6. 6.
    Miličević A., Nikolić S., Trinajstić N.: On reformulated Zagreb indices. Mol. Div. 8, 393–399 (2004)CrossRefGoogle Scholar
  7. 7.
    Das K.C., Gutman I.: Some properties of the second Zagreb index. MATCH Commun. Math. Comput. Chem. 52, 103–112 (2004)Google Scholar
  8. 8.
    Lather V., Madan A.K.: Application of graph theory: topological models for prediction of CDK-1 inhibitory activity of aloisines. Croat. Chem. Acta 78, 55–61 (2005)Google Scholar
  9. 9.
    Veljan D., Vukičević D.: On acyclic molecular graphs with prescribed numbers of edges that connect vertices of given degrees. J. Math. Chem. 40, 155–178 (2006)CrossRefGoogle Scholar
  10. 10.
    D. Janežič, A. Miličević, S. Nikolić, N. Trinajstić, Graph-Theoretical Matrices in Chemistry (The University of Kragujevac, Kragujevac, 2006)Google Scholar
  11. 11.
    D. Janežič, A. Miličević, S. Nikolić, On Zagreb matrices and derived descriptors, Lecture Series on Computer and Computational Sciences, vol. 6. (2006), pp. 1–3Google Scholar
  12. 12.
    D. Janezic, S. Nikolic, A. Milicevic, N. Trinajstic, On the Zagreb Matrices Reported at 20 Years Anniversary of Molecular Topology at Cluj (Cluj, Romania, September 25–30, 2006)Google Scholar
  13. 13.
    Wilson R.J.: Introduction to Graph Theory, pp. 27. Oliver & Boyd, Edinburgh (1972)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Damir Vukičević
    • 1
  • Sonja Nikolić
    • 2
  • Nenad Trinajstić
    • 2
  1. 1.Department of MathematicsThe University of SplitSplitCroatia
  2. 2.The Rugjer Bošković InstituteZagrebCroatia

Personalised recommendations