Advertisement

Journal of Mathematical Chemistry

, Volume 45, Issue 2, pp 513–524 | Cite as

Tubercular fulleroids

  • A. E. Vizitiu
  • Cs. L. Nagy
  • M. Stefu
  • G. Katona
  • M. V. Diudea
  • B. Parv
  • D. Vukičević
Original Paper
  • 42 Downloads

Abstract

New tubercular fulleroids are built up by using the three classical composite map operations: tripling (leapfrog Le), quadrupling (chamfering Q) and septupling (capra Ca) on the trivalent Platonic solids. These transforms belong to the tetrahedral, octahedral and icosahedral symmetry groups and show interesting mathematical and (possible) physico-chemical properties.

Keywords

Fullerenes Map operations Leapfrog Chamfering Capra Opening operation Kekulé valence structure Kekulé structure count 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Pisanski, M. Randić, in Geometry at Work, Notes 53 (Math. Assoc. Am., Washington, 2000), pp. 174–194Google Scholar
  2. 2.
    Euler L.: Novi Comment. Acad. Sci. I. Petropolitanae 8, 128–140 (1736)Google Scholar
  3. 3.
    Euler L.: Novi Comment. Acad. Sci. I. Petropolitanae 4, 109–160 (1758)Google Scholar
  4. 4.
    Harary F.: Graph Theory. Addison-Wesley, Reading (1969)Google Scholar
  5. 5.
    Diudea M.V., John P.E., Graovac A., Primorac M., Pisanski T.: Croat. Chem. Acta 76, 153–159 (2003)Google Scholar
  6. 6.
    Diudea M.V.: Forma (Tokyo) 19, 131–163 (2004)Google Scholar
  7. 7.
    DeLa Vaissiere B., Fowler P.W., Deza M.: J. Chem. Inf. Comput. Sci. 41, 376–386 (2001)Google Scholar
  8. 8.
    Fowler P.W.: .Phys. Lett. 131, 444–450 (1986)Google Scholar
  9. 9.
    P.W. Fowler, J.I. Steer, J. Chem. Soc., Chem. Commun. 1403–1405 (1987)Google Scholar
  10. 10.
    Fowler P.W., Rogers K.M.: J. Chem. Soc., Faraday Trans. 94, 1019–1027 (1998)CrossRefGoogle Scholar
  11. 11.
    Fowler P.W., Rogers K.M.: J. Chem. Soc., Faraday Trans. 94, 2509–2514 (1998)CrossRefGoogle Scholar
  12. 12.
    V. Eberhard, Zur Morphologie der Polyeder (Leipzig, Teubner, 1891), S.180ffGoogle Scholar
  13. 13.
    Goldberg M.: Tohoku Math. J. 43, 104–108 (1937)Google Scholar
  14. 14.
    Diudea M.V.: Studia Univ. “Babes-Bolyai” 48(2), 3–16 (2003)Google Scholar
  15. 15.
    Diudea M.V.: J. Chem. Inf. Model. 45, 1002–1009 (2005)CrossRefGoogle Scholar
  16. 16.
    Schlegel V.: Verhandlungen der Kaiserlichen Leopoldinisch-Carolinischen Deutshen Akademie der aturforscher 44, 337–459 (1893)Google Scholar
  17. 17.
    H. Prinzbach, et al., Nature 407, 60–63 (2000); M. Saito, Y. Miyamoto, Phys. Rev. Lett. 87, 035503 (2001); J. Lu, et al., Phys. Rev. B 67, 125415 (2003)Google Scholar
  18. 18.
    M. Stefu, M.V. Diudea, Cage Versatile 3.0 (“Babes-Bolyai” University, 2005)Google Scholar
  19. 19.
    Fowler P.W., T. Pisanski: J. Chem. Soc., Faraday Trans. 90, 2865–2871 (1994)CrossRefGoogle Scholar
  20. 20.
    N. Trinajstić, Chemical Graph Theory (Boca Raton, 1992)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • A. E. Vizitiu
    • 1
  • Cs. L. Nagy
    • 1
  • M. Stefu
    • 1
  • G. Katona
    • 1
  • M. V. Diudea
    • 1
  • B. Parv
    • 2
  • D. Vukičević
    • 3
  1. 1.Faculty of Chemistry and Chemical EngineeringBabes-Bolyai UniversityClujRomania
  2. 2.Faculty of Mathematics and Computer ScienceBabes-Bolyai UniversityClujRomania
  3. 3.Department of MathematicsUniversity of SplitSplitCroatia

Personalised recommendations