Advertisement

Journal of Mathematical Chemistry

, Volume 45, Issue 1, pp 188–222 | Cite as

Kinetics of phase transitions in two dimensional Ising models studied with the string method

  • Maddalena Venturoli
  • Eric Vanden-Eijnden
  • Giovanni Ciccotti
Original Paper

Abstract

The kinetics of phase transitions in the two dimensional Ising model under different conditions is studied using the string method. The key idea is to work in collective variables, consisting of block of spins, which allow for a continuous approximation of the collective variable state-space. The string method computes the minimum free energy path (MFEP) in this collective variable space, which is shown to explain the mechanism of the phase transformation (in particular, an approximation of its committor function, its free energy and its transition state). In this paper the theoretical background of the technique as well as its computational aspects are discussed in details. The string method is then used to analyze phase transition in the Ising model with imposed boundary conditions and in a periodic system under an external field of increasing magnitude. In each case, the mechanism of the phase transformation is elucidated.

Keywords

Minimum free energy path String method Sampling Phase transition Ising model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ten Wolde P.R., Ruiz-Montero M.J. and Frenkel D. (1995). Phys. Rev. Lett. 75: 2714–2717 CrossRefGoogle Scholar
  2. 2.
    ten WoldeP.R., Ruiz-Montero M.J. and Frenkel D. (1996). J. Chem. Phys. 104: 9932–9947 CrossRefGoogle Scholar
  3. 3.
    Sanz E., Frenkel D. and ValerianiC. (2005). J. Chem. Phys. 122: 194501 Google Scholar
  4. 4.
    Maragliano L., Fischer A., Vanden-Eijnden E. and Ciccotti G. (2006). J. Chem. Phys. 125: 024106 CrossRefGoogle Scholar
  5. 5.
    Miller T.F., Vanden-Eijnden E. and Chandler D. (2007). Proc. Natl. Acad. Sci. USA 104: 14559–14564 CrossRefGoogle Scholar
  6. 6.
    Weinan E. and Vanden-Eijnden E. (2006). J. Stat. Phys. 123: 503–523 CrossRefGoogle Scholar
  7. 7.
    E. Vanden-Eijnden, in Transition path theory. ed. by M. Ferrario, G. Ciccotti, K. Binder. Computer Simulations in Condensed Matter: From Materials to Chemical Biology, vol 1 (Springer, Berlin, 2006), pp. 439–478Google Scholar
  8. 8.
    Binder K. (1987). Rep. Prog. Phys. 50: 783–859 CrossRefGoogle Scholar
  9. 9.
    P.A. Rikvold, B.M. Gorman, in Recent results on the decay of metastable phases. ed. by D. Stauffer. Annual Reviews of Computational Physics I (World Scientific, Singapore, 1994), pp. 149–192Google Scholar
  10. 10.
    Onsager L. (1994). Phys. Rev. 65: 117–149 CrossRefGoogle Scholar
  11. 11.
    Yang C.N. (1952). Phys. Rev. 85: 808–816 CrossRefGoogle Scholar
  12. 12.
    Weinan E., Ren W. and Vanden-Eijnden E. (2005). Chem. Phys. Lett. 413: 242–247 CrossRefGoogle Scholar
  13. 13.
    P. Metzner, C. Schütte, E. Vanden-Eijnden, Mult. Model. Simul, SIAM (2007)Google Scholar
  14. 14.
    G. Giacomin, J. L. Lebowitz, E. Presutti, in Deterministic and stochastic hydrodynamic equations arising from simple microscopic model systems. ed. by R.A. Carmona, B. Rozovskii. Stochastic Partial Differential Equations: Six Perspectives, volume Math. Surveys Monogr, vol 64 (AMS, Providence, RI, 1999), pp. 107–152Google Scholar
  15. 15.
    Freidlin M.I. and Wentzell A.D. (1984). Random Perturbations of Dynamical Systems. Springer, Berlin-Heidelberg-New York Google Scholar
  16. 16.
    Weinan E., Ren W. and Vanden-Eijnden E. (2004). Comm. Pure. Appl. Math. 57: 637–656 CrossRefGoogle Scholar
  17. 17.
    Weinan E., Ren W. and Vanden-Eijnden E. (2007). J. Chem. Phys. 126: 164103 CrossRefGoogle Scholar
  18. 18.
    Milchev A., De Virgiliis A. and Binder K. (2005). J. Phys.: Condens. Matter 17: 6783–6804 CrossRefGoogle Scholar
  19. 19.
    Richards H.L., Sides S.W., Novotny M.A. and Rikvold P.A. (1995). J. Magn. Magn. Mater. 150: 37–50 CrossRefGoogle Scholar
  20. 20.
    Efros A.L. (1986). Physics and Geometry of Disorder. MIR, Moscow Google Scholar
  21. 21.
    Weinan E., Ren W. and Vanden-Eijnden E. (2005). J. Phys. Chem. B 109: 6688–6693 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Maddalena Venturoli
    • 1
  • Eric Vanden-Eijnden
    • 1
  • Giovanni Ciccotti
    • 2
  1. 1.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA
  2. 2.Dipartimento di Fisica and CNISMUnità di Roma 1, Università di Roma La SapienzaRomaItaly

Personalised recommendations