Advertisement

Journal of Mathematical Chemistry

, Volume 44, Issue 4, pp 1009–1022 | Cite as

Rearrangement of energy bands: topological aspects

  • B. I. Zhilinskií
Original Paper

Abstract

Presence of energy bands in quantum energy spectra of molecules reflects the existence of “slow” and “fast” motions in corresponding classical problem. Generic qualitative modifications of energy bands under the variation of some strict or approximate integrals or motion considered as control parameters are analyzed within purely quantum description, within semi-quantum one (slow dynamical variables are classical; fast variables are quantum) and within purely classical one. In quantum approach the reorganization of bands is seen from the redistribution of energy levels between bands. In semi-quantum approach the system of bands is represented by a complex vector bundle with the base space being the classical phase space for slow variables. The topological invariants (Chern classes) of the bundle are related to the number of states in bands through Fedosov deformation quantization. In purely classical description the reorganization of energy bands is manifested through the presence of Hamiltonian monodromy.

Keywords

Energy bands Adiabatic approximation Topological invariants Hamiltonian monodromy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Faure F., Zhilinskii B. (2002) Acta Appl. Math. 70: 265CrossRefGoogle Scholar
  2. 2.
    Zhilinskii B. (2005). Acta Appl. Math. 87: 281CrossRefGoogle Scholar
  3. 3.
    Nekhoroshev N.N., Sadovskii D., Zhilinskii B. (2006) . Ann. Henri Poincarè 7: 1099CrossRefGoogle Scholar
  4. 4.
    K. Efstathiou, Metamorphoses of Hamiltonian Systems with Symmetries, LNM 1864 (Springer, Berlin, 2005)Google Scholar
  5. 5.
    Michel L., Zhilinskii B. (2001) Phys. Rep. 341: 11CrossRefGoogle Scholar
  6. 6.
    Zhilinskii B. (2001). Phys. Rep. 341: 85CrossRefGoogle Scholar
  7. 7.
    Michel L., Zhilinskii B. (2001). Phys. Rep. 341: 173CrossRefGoogle Scholar
  8. 8.
    Efstathiou K., Sadovskii D., Zhilinskii B. (2004). SIAM J. Appl. Dyn. Syst. (SIADS) 3:261CrossRefGoogle Scholar
  9. 9.
    Zhilinskii B. (1996). Spectrochim. Acta A 52: 881CrossRefGoogle Scholar
  10. 10.
    Kozin I.N., Sadovskii D.A., Zhilinskii B.I. (2005) . Spectrocim. Acta A 61: 2867CrossRefGoogle Scholar
  11. 11.
    Zhang W.M., Feng D.H., Gilmore R. (1990) . Rev. Mod. Phys. 62: 867CrossRefGoogle Scholar
  12. 12.
    Perelomov A. (1986) Generalized Coherent States and their Applications. Springer, New YorkGoogle Scholar
  13. 13.
    M. Nakahara, Geometry, Topology and Physics (Adam Hilger, Bristol, 1990)Google Scholar
  14. 14.
    Griffith P., Harris J. (1978) Principles of Algebraic Geometry. Wiley, New YorkGoogle Scholar
  15. 15.
    Pavlov-Verevkin V.B., Sadovskii D.A., Zhilinskii B.I. (1988) Europhys. Lett. 6: 573CrossRefGoogle Scholar
  16. 16.
    Faure F., Zhilinskii B.I. (2000) . Phys. Rev. Lett. 85: 960CrossRefGoogle Scholar
  17. 17.
    Faure F., Zhilinskii B.I. (2001) Lett. Math. Phys. 55: 219CrossRefGoogle Scholar
  18. 18.
    D.J. Thouless, Topological Quantum Numbers in Non Relativistic Physics (World Scientific, Singapore, 1998)Google Scholar
  19. 19.
    Zhilinskii B. (1989) . Chem. Phys. 137: 1CrossRefGoogle Scholar
  20. 20.
    Faure F., Zhilinskii B.I. (2002) . Phys. Lett. A 302: 242CrossRefGoogle Scholar
  21. 21.
    Englman R. (1972) The Jahn–Teller Effect in Molecules and Crystals. Wiley, New YorkGoogle Scholar
  22. 22.
    Nekhoroshev N.N. (1972) Trans. Moscow Math. Soc. 26: 180Google Scholar
  23. 23.
    Duistermaat J.J. (1980) Comm. Pure Appl. Math. 33: 687CrossRefGoogle Scholar
  24. 24.
    Cushman R.H., Duistermaat J.J. (1988) . Bull. Am. Math. Soc. 19: 475CrossRefGoogle Scholar
  25. 25.
    Vũ Ngọc S.(1999) . Comm. Math. Phys. 203: 465CrossRefGoogle Scholar
  26. 26.
    B.I. Zhilinskii, in Topology in Condensed Matter, vol. 150 (Springer Series in Solid State Sciences, 2006) pp. 165–186Google Scholar
  27. 27.
    Cushman R.H., Sadovskií D.A. (2000) . Physica D 142: 166–196CrossRefGoogle Scholar
  28. 28.
    Sadovskii D.A., Zhilinskii B.I. (1999). Phys. Lett. A 256: 235–244CrossRefGoogle Scholar
  29. 29.
    Grondin, D.A. Sadovskii, B.I. Zhilinskii, Phys. Rev. A 142, 012105-1–15 (2002)Google Scholar
  30. 30.
    Waalkens H., Junge A., Dullin H.R. (2003) . J. Phys. A. Math. Gen. 36: L307–L314CrossRefGoogle Scholar
  31. 31.
    Waalkens H., Dullin H.R., Richter P.H. (2004) . Physica D 196: 265–310CrossRefGoogle Scholar
  32. 32.
    Child M.S., Weston T., Tennyson J. (1999) . Mol. Phys. 96: 371–379CrossRefGoogle Scholar
  33. 33.
    Joyeux M., Sadovskii D.A., Tennyson J. (2003) . Chem. Phys. Lett. 382: 439CrossRefGoogle Scholar
  34. 34.
    Efstathiou K., Joyeux M., Sadovskii D.A. (2004) Phys. Rev. A 69: 032504CrossRefGoogle Scholar
  35. 35.
    R.H. Cushman, H.R. Dullin, A. Giacobbe, D.D. Holm, M. Joyeux, P. Lynch, D.A. Sadovskii, B.I. Zhilinski, Phys. Rev. Lett. 93, 024302-1–4 (2004)Google Scholar
  36. 36.
    Giacobbe A., Cushman R.H., Sadovskií D.A., Zhilinskií B.I. (2004) . J. Math. Phys. 45: 5076CrossRefGoogle Scholar
  37. 37.
    Child M. (2007) . Adv. Chem. Phys. 136: 39CrossRefGoogle Scholar
  38. 38.
    Duistermaat J.J., Heckman G.L. (1982) . Invent. Math. 69: 259CrossRefGoogle Scholar
  39. 39.
    Fedosov B. (2000) . Comm. Math. Phys. 209: 691CrossRefGoogle Scholar
  40. 40.
    Hawkins E. (2000) Comm. Math. Phys. 215: 409CrossRefGoogle Scholar
  41. 41.
    Sadovskii D., Zhilinskii B. (1995) . J. Chem. Phys. 103: 10520CrossRefGoogle Scholar
  42. 42.
    R. Stanley, Enumerative Combinatorics, vol. 1 (Wadsworth Brooks, Montrey, Ca, 1986)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Université du LittoralDunkerqueFrance

Personalised recommendations