Advertisement

Journal of Mathematical Chemistry

, Volume 44, Issue 2, pp 405–417 | Cite as

Resistance distance local rules

  • Haiyan Chen
  • Fuji Zhang
Original Paper

Abstract

In [D.J. Klein, Croat. Chem. Acta. 75(2), 633 (2002)] Klein established a number of sum rules to compute the resistance distance of an arbitrary graph, especially he gave a specific set of local sum rules that determined all resistance distances of a graph (saying the set of local sum rules is complete). Inspired by this result, we give another complete set of local rules, which is simple and also efficient, especially for distance-regular graphs. Finally some applications to chemical graphs (for example the Platonic solids as well as their vertex truncations, which include the graph of Buckminsterfullerene and the graph of boron nitride hetero-fullerenoid B 12 N 12) are made to illustrate our approach.

Keywords

Resistance distance Laplacian matrix Distance regular graph 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klein D.J., Randić M. (1993) . J. Math. Chem. 12, 81CrossRefGoogle Scholar
  2. 2.
    Klein D.J. (1996) . Commun. Math. Comput. Chem. (MATCH) 36, 7Google Scholar
  3. 3.
    Klein D.J., Zhu H.Y. (1998) . J. Math. Chem. 23, 179CrossRefGoogle Scholar
  4. 4.
    Fowler P.W. (2002) . Croat. Chem. Acta. 75(2): 401Google Scholar
  5. 5.
    Bonchev D., Balaban A.T., Liu X., Klein D.J. (1994) . Int. J. Quantum Chem. 50, 1CrossRefGoogle Scholar
  6. 6.
    Zhu H.Y., Klein D.J., Lukovits I. J. (1996) . Chem. Inf. Comput. Sci. 36, 420CrossRefGoogle Scholar
  7. 7.
    Gutman I., Mohar B. (1996) . J. Chem. inf. Comput. Sci. 36, 982CrossRefGoogle Scholar
  8. 8.
    Klein D.J., Ivanciuc O. (2001) . J. Math. Chem. 30, 271CrossRefGoogle Scholar
  9. 9.
    Lukovits I., Nikolić S., Trinajstić N. (1999) . Int. J. Quantum Chem. 71, 217CrossRefGoogle Scholar
  10. 10.
    Babić D., Klein D.J., Lukovits I., Nikolić S., Trinajstić N. (2002) . Int. J. Quantum Chem. 90, 161Google Scholar
  11. 11.
    W. Xiao, I. Gutman, MATCH-Commun. Math. Comput. Chem. 49, 67 (2003); 51, 119 (2004)Google Scholar
  12. 12.
    Xiao W., Gutman I. (2003) . Theor. Chem. Acta. 110, 284Google Scholar
  13. 13.
    J.L. Palacios, Int. J. Quantum Chem. 81, 29 and 135 (2001)Google Scholar
  14. 14.
    Klein D.J. (2002) Graph Geometry via Metrics. In: Rouvray D.H., King R.B. (eds). Topology in Chemistry. Horwood Pub, Chichester, pp. 292-317Google Scholar
  15. 15.
    Balaban A.T., Klein D.J. (2002) . Scientometrics 55, 59–70CrossRefGoogle Scholar
  16. 16.
    Klein D.J. (2002) . Croat. Chem. Acta. 75(2): 633Google Scholar
  17. 17.
    R.M. Foster, In Contributions to Applied Mechanics (Edward Brothers, Ann Arbor, Michigan, 1949) p. 333Google Scholar
  18. 18.
    Weinberg L. (1958) . IRE Trans. Cir. Th. 5, 8Google Scholar
  19. 19.
    N.L. Biggs, Algebraic Graph Theory, 2nd edn. (Cambridge University Press, 1993)Google Scholar
  20. 20.
    Eric W. Weisstein. Resistance distance. From MathWorld—A Wolfram Web Resource. http://mathword.wolfram.com/ResistanceDistance.html

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of SciencesJimei UniversityXiamenChina
  2. 2.Institute of MathematicsXiamen UniversityXiamenChina

Personalised recommendations