Advertisement

Journal of Mathematical Chemistry

, Volume 43, Issue 4, pp 1573–1577 | Cite as

Improved long range relationship between parameters of the Morse and Rydberg potential functions

  • Teik-Cheng Lim
Original Paper

Abstract

Information on parameter relationships between different interatomic potential energy functions is useful when there is a functional mismatch between preferred parameters from one potential function and the adoption of another potential function in computational chemistry softwares. Previous attempts in relating parameters of different potential functions focus on equating the potential curves’ curvatures at the minimum well-depth, which are not accurate for large bond-stretching. In this paper, the long range error is minimized by imposing equal energy integral from equilibrium bond length to bond dissociation. Plotted results for the long range parameter relationship between the Morse and Rydberg potential energy functions reveal excellent agreement for long range interaction.

Keywords

Bond-stretching Long range Parameter relations Morse Rydberg 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lim T.C., (2003) J. Math. Chem. 33:29CrossRefGoogle Scholar
  2. Lim T.C., Z. Naturforsch. A 58, 615 (2003)Google Scholar
  3. Lim T.C., (2004) Phys. Scr. 70:347CrossRefGoogle Scholar
  4. Lim T.C., (2005) J. Math. Chem. 38:495CrossRefGoogle Scholar
  5. Lim T.C., (2006) Mol. Phys. 104:1827CrossRefGoogle Scholar
  6. Lim T.C., J. Math. Chem. (in press)Google Scholar
  7. Lim T.C., (2007) Chem. Phys. 331:270CrossRefGoogle Scholar
  8. Morse P.M., (1929) Phys. Rev. 34:57CrossRefGoogle Scholar
  9. Rydberg R., (1931) Z. Physik 73:376CrossRefGoogle Scholar
  10. Rydberg R., (1933) Z. Physik 80:514CrossRefGoogle Scholar
  11. Lim T.C., (2004) J. Math. Chem. 36:139CrossRefGoogle Scholar
  12. Murrell J.N., Mottram R.E., (1990) Mol. Phys. 69:571CrossRefGoogle Scholar
  13. Murrell J.N., Rodriguez-Ruiz J.A., (1990) Mol. Phys. 71:823CrossRefGoogle Scholar
  14. Al-Derzi A.R., Johnston R.L., Murrell J.N., Rodriguez-Ruiz J.A., (1991) Mol. Phys. 73:265CrossRefGoogle Scholar
  15. Li S., Johnston R., Murrell J.N., (1992) J. Chem. Soc. Faraday Trans. 88:1229CrossRefGoogle Scholar
  16. Cox H., Johnston R.L., Murrell J.N., (1999) J. Solid State Chem. 145:517CrossRefGoogle Scholar
  17. L.D. Lloyd, R.L Johnston, J. Chem. Soc. Dalton Trans. 307 (2000)Google Scholar
  18. Murrell J.N., Sorbie K.S., (1974) J. Chem. Soc. Faraday Trans. II 70:1552CrossRefGoogle Scholar
  19. Huxley P., Murrell J.N., (1983) J. Chem. Soc. Faraday Trans. II 79:323CrossRefGoogle Scholar
  20. Murrell J.N., Carter S., Farantos S.C., Huxley P., Varandas A.J.C., (1984) Molecular Potential Energy Functions. Wiley, New YorkGoogle Scholar
  21. Girifalco L.A., Wiezer V.G., (1959) Phys. Rev. 114:687CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Science and TechnologySIM University (UniSIM)SingaporeRepublic of Singapore

Personalised recommendations