Journal of Mathematical Chemistry

, Volume 43, Issue 2, pp 713–718 | Cite as

Sharp upper bounds for total π-electron energy of alternant hydrocarbons

  • Ji-Ming Guo
The energy E(G) of a graph G is defined as the sum of the absolute values of all the eigenvalues of the adjacency matrix of the graph G. This quantity is used in chemistry to approximate the total π-electron energy of molecules and in particular, in case G is bipartite, alternant hydrocarbons. In this paper, we show that if G = (V 1, V 2; E) is a bipartite graph with \(m\geqslant n_1\) edges and \(|V_1|=n_1\geqslant n_2=|V_2|\), then
$$ E(G)\leqslant \frac{2m}{\sqrt{n_1n_2}}+2\sqrt{(n_2-1) \left(m-\frac{m^2}{n_1n_2}\right)} $$
$$ E(G)\leqslant \sqrt{n_1n_2}(1+\sqrt{n_2}) $$
must hold.


alternant hydrocarbons energy upper bound 

AMS Subject Classification

05C50 05C35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Caporossi G., Cvetković D.M., Gutman I., Hansen P. (1999) Variable neighborhood search for extremal graphs. 2. Finding graphs with extremal energy. J. Chem. Inf. Comput. Sci. 39: 984–996CrossRefGoogle Scholar
  2. 2.
    Coulson C., O’Leary B., Mallion R. (1978) Hückel theory for organic chemists. Academic Press, LondonGoogle Scholar
  3. 3.
    D. M. Cvetković, M. Doob and H. Sachs, Spectra of graphs-Theory and Application, Deutscher Verlag der Wissenschaften (Academic Press, Berlin-New York, 1980); 2nd ed. 1982; 3rd ed. (Johann Ambrosius Barth Verlag, Heidelberg-Leipzig, 1995).Google Scholar
  4. 4.
    Gutman I. (1974) Bounds for total π-electron energy. Chem. Phys. Lett. 24: 283–285CrossRefGoogle Scholar
  5. 5.
    Gutman I. (1977) Bounds for total π-electron energy of polymethines. Chem. Phys. Lett. 50: 488–490CrossRefGoogle Scholar
  6. 6.
    Gutman I. (1978) The energy of a graph, Ber. Math.-Stat. Sekt. Forschungszent. Graz 103: 1–22Google Scholar
  7. 7.
    Gutman I., Polansky O.E. (1986) Mathematical concepts in organic chemistry. Springer, Berlin Heidelberg New YorkGoogle Scholar
  8. 8.
    Gutman I. (1992) Total π-electron energy of Benzenoid hydrocarbons. Topics Curr. Chem. 162: 29–63CrossRefGoogle Scholar
  9. 9.
    I. Gutman, The energy of a graph: Old and new results, in: Algebraic Combinatorics and its Applications, eds. A. Betten, et al. (Springer, Berlin Heidelberg New York, 2001) pp. 196–211.Google Scholar
  10. 10.
    Koolen J.H., Moulton V., Gutman I. (2000) Improving the McClelland inequality for total π-electron energy, Chem. Phys. Lett. 320 :213–216CrossRefGoogle Scholar
  11. 11.
    Koolen J.H., Moulton V. (2001) Maximal energy graphs. Adv. Appl. Math. 26:47–52CrossRefGoogle Scholar
  12. 12.
    Koolen J.H., Moulton V. (2003) Maximal energy bipartite graphs. Graphs Comb. 19: 131–135CrossRefGoogle Scholar
  13. 13.
    McClelland B. (1971) Properties of the latent roots of a matrix: The estimation of π-electron energies. J. Chem. Phys. 54: 640–643CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Applied MathematicsChina University of PetroleumShandongPeople’s Republic of China

Personalised recommendations