Advertisement

Journal of Mathematical Chemistry

, Volume 43, Issue 2, pp 647–657 | Cite as

Saturation number of fullerene graphs

  • Tomislav Došlić
Article

Saturation number of a graph G is the minimum possible size of a maximal matching in G. We establish improved upper and lower bounds on the saturation number in fullerene graphs and discuss their sharpness and quality.

Keywords

saturation number maximal matching fullerene graph fullerene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bollobás B. (1985) Random Graphs. Academic Press, New YorkGoogle Scholar
  2. 2.
    Cyvin S.J., Gutman I. (1988) Kekulé Structures in Benzenoid Hydrocarbons. Springer, Heidelberg, Lec. Notes in ChemistryGoogle Scholar
  3. 3.
    Došlić T. (1998). J. Math. Chem. 24:359CrossRefGoogle Scholar
  4. 4.
    Došlić T. (2002). J. Math. Chem. 31:187CrossRefGoogle Scholar
  5. 5.
    T. Došlić, J. Math. Chem. to appear.Google Scholar
  6. 6.
    Edmonds J. (1965). Can. J. Math. 175:449Google Scholar
  7. 7.
    Fowler P.W., Manolopoulos D.E. (1995) An Atlas of Fullerenes. Clarendon Press, OxfordGoogle Scholar
  8. 8.
    E. Friedman and R. W. Pratt, New bounds for largest planar graphs with fixed maximum degree and diameter, preprint.Google Scholar
  9. 9.
    Gordon M., Davison W.H.T. (1952). J. Chem. Phys. 20:428CrossRefGoogle Scholar
  10. 10.
    Graver J. (2006). Eur. J. Combin. 27:850CrossRefGoogle Scholar
  11. 11.
    Grünbaum B., Motzkin T.S. (1963). Can. J. Math. 15:744Google Scholar
  12. 12.
    Harary F. (1969) Graph Theory. Addison-Wesley, Reading, MAGoogle Scholar
  13. 13.
    Hosoya H. (1971). Bull. Chem. Soc. Jpn. 44:2332CrossRefGoogle Scholar
  14. 14.
    Klein D.J., Liu X. (1992). J. Math. Chem. 11:199CrossRefGoogle Scholar
  15. 15.
    Korte B., Hausmann D. (1978). Ann. Discrete Math. 2:65CrossRefGoogle Scholar
  16. 16.
    Lovász L., Plummer M.D. (1986) Matching Theory. North-Holland, Amsterdam, The Netherlands, Ann. Discr. Math. vol. 29Google Scholar
  17. 17.
    Maschlanka P., Volkmann L. (1996). Discrete Math. 154:167CrossRefGoogle Scholar
  18. 18.
    Rongsi C., Cyvin S.J., Brunvoll J., Klein D.J. (1990). Topics Curr. Chem. 153:227Google Scholar
  19. 19.
    Rouvret D. (1983) Chemical Application of Topology and Graph Theory. Elsevier, AmsterdamGoogle Scholar
  20. 20.
    West D.B. (1996) Introduction to Graph Theory. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  21. 21.
    Yannakakis M., Gavril F. (1980). SIAM. J. Appl. Math. 38:364CrossRefGoogle Scholar
  22. 22.
    Zhang H., Zhang F. (2001). J. Math. Chem. 30:343CrossRefGoogle Scholar
  23. 23.
    Zito M. (2003). Theor. Comput. Sc. 297:487CrossRefGoogle Scholar
  24. 24.
    Zito M. (1999) Research Report CS-RR-369. University of Warwick, WarwickGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Informatics and Mathematics, Faculty of AgricultureUniversity of ZagrebZagrebCroatia

Personalised recommendations