Journal of Mathematical Chemistry

, Volume 43, Issue 1, pp 1–11 | Cite as

Energy–time uncertainty relations and time operators


It is proved that for any Hamiltonian in a separable Hilbert space, having a non-empty absolutely continuous spectrum, there exists a time operator densely defined in the subspace of absolutely continuous vectors. This result is obtained by using the Carbó-Dorca parameterized vector spaces and the spectral representation theorem for self-adjoint operators in Hilbert spaces. The restriction of the Hamiltonian to the absolutely continuous subspace and its time operator are incompatible. These results bring a completely new light on the energy–time uncertainty relations. The possible physical interpretations and related facts are also examined.


uncertainty relations time operators energy–time uncertainty relations cyclic operators parameterized vector spaces 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antonopoulos C., (2004). Ann. Found. Louis de Broglie. 29: 427Google Scholar
  2. 2.
    Aharonov Y., Bohm D., (1961). Phys. Rev. 122: 1649CrossRefGoogle Scholar
  3. 3.
    Aharonov Y., Bohm D., (1964). Phys. Rev. 134: 1417CrossRefGoogle Scholar
  4. 4.
    Busch P., (1990). Found. Phys. 20: 34Google Scholar
  5. 5.
    Hilgevoord J., (2002). Am. J. Phys. 70: 301CrossRefGoogle Scholar
  6. 6.
    Dirac P.A.M., (1958). The Principles of Quantum Mechanics. Clarendon, OxfordGoogle Scholar
  7. 7.
    Carbo-Dorca R., (2004). J. Math. Chem. 36: 41CrossRefGoogle Scholar
  8. 8.
    Carbo-Dorca R., (2005). J. Math. Chem 38: 89CrossRefGoogle Scholar
  9. 9.
    Halmos P.R., (1951). Introduction to Hilbert Spaces. Chelsea Publ Comp, N.YGoogle Scholar
  10. 10.
    I.M. Gelfand and N.Y. Vilenkin, Generalized Functions (Academic Press, 1964).Google Scholar
  11. 11.
    T. Kato, Perturbation Theory for Linear Operators (Springer, 1966).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Institute of Physical ChemistryBucharestRomania

Personalised recommendations