Journal of Mathematical Chemistry

, Volume 42, Issue 4, pp 1041–1056 | Cite as

Double hexagonal chains with minimal total π-electron energy


The total energy of all π-electrons in a conjugated hydrocarbon (within the framework of HMO approximation) is the sum of the absolute value of all the eigenvalues of its corresponding graph. In this paper, we consider “double hexagonal chains” as benzenoids constructed by successive fusions of successive naphthalenes along a zig–zag sequence of triples of edges as appear on opposite sides of each naphthalene unit. It is shown that if the fusions are such as to give a polyaceacene then the total π-electron energy is the minimum from among all the double hexagonal chains with the same number of naphthalene units.


the total π-electron energy double hexagonal chain quasi-ordering 

AMS subject classification

05C50 05C35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gutman I., Polansky O.E. (1986). Mathematical concepts in organic chemistry. Springer, BerlinGoogle Scholar
  2. 2.
    Gutman I., Cyvin S.J. (eds) (1990). Advances in the Theory of benzenoid hydrocarbons. Topi. Curr. Chem., Vol. 153. Springer, BerlinGoogle Scholar
  3. 3.
    Gutman I. (eds) (1992). Advances in the Theory of benzenoid hydrocarbons I. Top. Curr. Chem., Vol. 162. Springer, BerlinGoogle Scholar
  4. 4.
    Gutman I. (1977). Theoret. Chim. Acta (Berlin) 45: 79CrossRefGoogle Scholar
  5. 5.
    Gutman I., Hou Y. (2001). MATCH – Commun. Math. Comput. Chem. 43: 17Google Scholar
  6. 6.
    Hou Y. (2001). J. Math. Chem. 29: 163CrossRefGoogle Scholar
  7. 7.
    Hou Y. (2002). Lin. Multilin. Algebra 49: 347CrossRefGoogle Scholar
  8. 8.
    Li H. (1999). J. Math. Chem. 25: 145CrossRefGoogle Scholar
  9. 9.
    Zhang F., Li H. (1999). Discrete Appl. Math. 92: 71CrossRefGoogle Scholar
  10. 10.
    Zhang F., Li Z., Wang L. (2001). Chem. Phys. Lett. 337: 125CrossRefGoogle Scholar
  11. 11.
    Zhang F., Li Z., Wang L. (2001). Chem. Phys. Lett. 337: 131CrossRefGoogle Scholar
  12. 12.
    Seitz W.A., Klein D.J. (eds) (1985). Chem. Phys. Lett. 115: 139.Google Scholar
  13. 13.
    Klein D.J., Schmalz T.G. (eds) (1985). Chem. Phys. Lett. 120: 367.Google Scholar
  14. 14.
    Cvetkovic D.M., Doob M., Gutman et al. I. (1988). Ann. Discrete Math. 36: 50Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of MathematicsQinghai Normal UniversityXining, QinghaiP.R. China
  2. 2.School of Mathematical SciencesXiamen UniversityXiamen, FujianP.R. China

Personalised recommendations