Journal of Mathematical Chemistry

, Volume 42, Issue 4, pp 849–857 | Cite as

An algorithm for reversal median problem


In this paper, we present an algorithm for reversal median problem whose performance ratio is less than 2.


Genome rearrangement reversal gene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Palmer J.D., Herbon L.A. (1988) Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J. Mol. Evol. 27, 87–97CrossRefGoogle Scholar
  2. 2.
    Karlin S., Mocarski E.S., Schachtel G.A. (1994) Molecular evolution of herpesviruses: Genomic and protein sequence comparisons. J. Virol. 68, 1886–1902Google Scholar
  3. 3.
    McGeoch D.J. (1992) Molecular evolution of large DNA viruses of eukaryotes. Sem. Virol. 3, 399–408Google Scholar
  4. 4.
    Bafna V., Pevzner P. (1995) Sorting by reversals: Genome rearrangements in plant organelles and evolutionary history of x chromosome. Mol. Biol. Evol. 12: 239–246Google Scholar
  5. 5.
    Bafna V., Pevzner P., Sorting permutations by transpositions, in: Proceedings 6th ACM–SIAM Ann. Symp. on Discrete Algorithms 1995, pp. 614–623.Google Scholar
  6. 6.
    Bafna V., Pevzner P. (1996) Genome rearrangements and sorting by reversals. SIAM J. Comupt. 25(2): 272–289CrossRefGoogle Scholar
  7. 7.
    Franklin N. (1985) Conservation of genome form but not sequence in the transcription antitermination determinants of bacteriophages λ, \(\phi\) 21, and p22. J. Mol. Evol. 181, 75–94Google Scholar
  8. 8.
    S. Hannenhalli and P. Pevzner, Transforming cabbage into turnip (polynomial algorithm for sorting signed permutation by reversals), in: Proceedings 27th ACM Symp. on Theory of Computing (STOC’95), 1995, pp. 178–189.Google Scholar
  9. 9.
    D.L. Hartl and E.W. Jones, Genetics: Analysis of Genes and Genomes, 5th edn. (Jones and Bartlett Publishers Inc., Boston, MA), pp. 364–367.Google Scholar
  10. 10.
    Gu Q.-P., Peng S., Sudborough H. (1999) A 2-approximation algorithm for genome rearrangements by reversals and transpositions. Theor. Comput. Sci. 210, 327–339CrossRefGoogle Scholar
  11. 11.
    Caprara A. (2003) Reversal median problem, INFORMS J. Comput. 15, 93–113CrossRefGoogle Scholar
  12. 12.
    M. Blanchette, G. Bourque and D. Sankoff, Breakpoint phylogenies, in: eds. Proceedings of Genome Informatics 1997 Vol. 25. eds. S. Miyano and T. Takagi (Universal Academy Press (New York, 1997) pp. 25–34.Google Scholar
  13. 13.
    B.M.E. Moret, S.K. Wyman, D.A. Bader, T. Warnow and M. Yan, A new implementation and detailed study of breakpoint analysis. In: Proceedings of the Sixth Pacific Symposium on Biocomputing (PSB 2001) (World Scientific Publishing Singapore), pp. 583–594.Google Scholar
  14. 14.
    Sankoff D., Blanchette M. (2000) Multiple genome rearrangement and breakpoint plylogenies. J. Comput. Biol 5: 555–570CrossRefGoogle Scholar
  15. 15.
    D. Sankoff and N. El-Mabrouk, Duplication, rearrangement and reconciliation, in: Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, eds. D. Sankoff and J.H. Nadean, (Kluwer Academic Publishers, Dordrecht, 2000) pp. 537–550.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of MathematicsZhejiang Normal UniversityJinhuaP.R. China

Personalised recommendations