Journal of Mathematical Chemistry

, Volume 42, Issue 4, pp 775–788 | Cite as

The spread of unicyclic graphs with given size of maximum matchings



The spread s(G) of a graph G is defined as s(G) = maxi,j i  − λ j |, where the maximum is taken over all pairs of eigenvalues of G. Let U(n,k) denote the set of all unicyclic graphs on n vertices with a maximum matching of cardinality k, and U *(n,k) the set of triangle-free graphs in U(n,k). In this paper, we determine the graphs with the largest and second largest spectral radius in U *(n,k), and the graph with the largest spread in U(n,k).


spread unicyclic graph characteristic polynomial eigenvalue 

AMS subject classification

05C50 15A42 15A36 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chang A., Tian F. (2003) On the spectral radius of unicyclic graphs with perfect matchings. Linear Algebra Appl. 370: 237–250CrossRefGoogle Scholar
  2. 2.
    Cvetkoić D., Doob M., Sachs H. (1980) Spectra of Graphs–Theory and Applications. Academic Press, New YorkGoogle Scholar
  3. 3.
    Cvetkoić D., Petrić M. (1984) A table of connected graphs on six vertices. Discrete Math. 50: 37–49CrossRefGoogle Scholar
  4. 4.
    Cvetkoić D., Rowlinson P. (1987) Spectra of unicyclic graphs. Graph Combin. 3: 7–23CrossRefGoogle Scholar
  5. 5.
    Cvetkoić D., Rowlinson P., Simić S. (1997). Eigenspaces of Graphs. Cambridge Univ, CambridgeGoogle Scholar
  6. 6.
    Gergory D., Hershkowitz D., Kirkland S. (2001) The spread of the spectrum of a graph, Linear Algebra Appl. 332–334: 23–35Google Scholar
  7. 7.
    Guo J., Tan S. (2001) On the spectral radius of trees.Linear Algebra Appl. 329: 1–8CrossRefGoogle Scholar
  8. 8.
    Hou Y., Li J. (2002) Bounds on the largest eigenvalues of trees with a given size of matching. Linear Algebra Appl. 342: 203–217CrossRefGoogle Scholar
  9. 9.
    Johnson C., Kumar R., Wolkowicz H. (1985) Lower bounds for the spread of a matrix. Linear Algebra Appl. 71: 161–173CrossRefGoogle Scholar
  10. 10.
    Li Q., Feng K. (1979) On the largest eigenvalue of graphs, Acta Math. Appl. Sinica 2: 167–175Google Scholar
  11. 11.
    Mirsky L. (1956) The spread of a matrix. Mathematika 3: 127–130CrossRefGoogle Scholar
  12. 12.
    Petrović M. (1983) On graphs whose spectral spread does not exceed 4. Publ. Inst. Math. (Beograd) 34 (48): 169–174Google Scholar
  13. 13.
    Simić S. (1987) On the largest eigenvalue of unicyclic graphs, Publ. Inst. Math. (Beograd) 42(56): 13–19Google Scholar
  14. 14.
    Yu A., Tian F. (2004) On the spectral radius of unicyclic graphs. MATCH commun. Math. Comput. Chem. 51:97–109Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Center for Combinatorics and LPMCNankai UniversityTianjinP.R. China
  2. 2.Department of MathematicsSouth China Normal UniversityGuangzhouP.R. China

Personalised recommendations