A note on competition in the bioreactor with toxin

  • Xuncheng Huang
  • Lemin Zhu

In this paper, we investigate a model with yields: γ1 = A 1 + B 1 S m and γ2 = A 2 + B 2 S n , for the competition in the bioreactor of two competitors for a single nutrient, in which one of the competitors produces toxin against its opponent. The existence of limit cycles in the 3-D system is obtained by using a Hopf bifurcation.


Bioreactor variable yields toxin bifurcation limit cycles 

AMS subject classification

34C35 34D20 92D25 


  1. 1.
    Smith H.L., Waltman P. (1995). The Theory of the Chemostat. Cambridge University, Cambridge, UKGoogle Scholar
  2. 2.
    Chao L., Levin B.R. (1981). Structured habitats and the evolution of anti-competitor toxins in bacteria. Proc. Nat. Acad. Sci. 75:6324–6328CrossRefGoogle Scholar
  3. 3.
    Huang X.C., Wang Y.M., Zhu L.M. (2006). Competition in the bioreactor with general quadratic yields when one competitor produces a toxin. J. Math. Chem. 39:281–294CrossRefGoogle Scholar
  4. 4.
    Hsu S.B., Waltman P. (1992). Analysis of a model of two competitors in a chemostat with an external inhibitor. SIAM J. Appl. Math. 52:528–540CrossRefGoogle Scholar
  5. 5.
    Hsu S.B., Luo T.K. (1995). Global analysis of a model of plasmid-bearing plasmid-free competition in a chemostat with inhibition. J. Math. Biol. 34:41–76CrossRefGoogle Scholar
  6. 6.
    Hsu S.B., Waltman P. (1997). Competition between plasmid-bearing and plasmid-free organisms in selective media. Chem. Eng. Sci. 52:23–35CrossRefGoogle Scholar
  7. 7.
    Hsu S.B., Waltman P. (1998). Competition in the chemostat when one competitor produces toxin. Jpn J. Indust. Appl. Math. 15:471–490CrossRefGoogle Scholar
  8. 8.
    Arino J., Pilyugin S.S., Wolkowicz G.K. (2003). Considerations on yield, nutrient uptake, cellular, and competition in chemostat models. Can. Appl. Math. Q. 11(2):107–142Google Scholar
  9. 9.
    Crooke P.S., Wei C.-J., Tanner R.D. (1980). The effect of the specific growth rate and yield expressions on the existence of oscillatory behavior of a continuous fermentation model. Chem. Eng. Commun. 6:333–339CrossRefGoogle Scholar
  10. 10.
    Crooke P.S., Tanner R.D. (1982). Hopf bifurcations for a variable yield continuous fermentation model. Int. J. Eng. Sci. 20:439–443CrossRefGoogle Scholar
  11. 11.
    Huang X.C. (1990). Limit cycles in a continuous fermentation model. J. Math. Chem. 5:287–296CrossRefGoogle Scholar
  12. 12.
    Huang X.C., Zhu L.M. (2005). A three dimensional chemostat with quadratic yields. J. Math. Chem. 38(4):623–636CrossRefGoogle Scholar
  13. 13.
    Zhu L.M., Huang X.C. (2005). Relative positions of limit cycles in the continuous culture vessel with variable yield. J. Math. Chem. 38(2):119–128CrossRefGoogle Scholar
  14. 14.
    Pilyugin S.S., Waltman P. (2003). Multiple limit cycles in the chemostat with variable yield. Math. Biosci. 182:151–166CrossRefGoogle Scholar
  15. 15.
    D’Heedene R.N. (1961). A third-order autonomous differential equation with almost periodic solutions. J. Math. Anal. Appl. 3:344–350CrossRefGoogle Scholar
  16. 16.
    Schweitzer P.A. (1974). Counterexample to the Serfert conjecture and opening closed leaves of foliations. Am. Math. 100(2):386–400CrossRefGoogle Scholar
  17. 17.
    Wolkowicz G.S.K., Lu Z. (1992). Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates. SIAM J. Appl. Math. 32:222–233CrossRefGoogle Scholar
  18. 18.
    Zhang J. (1987). The Geometric Theory and Bifurcation Problem of Ordinary Differential Equation. Peking University press, BeijingGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Yangzhou Polytechnic UniversityYangzhouP.R. China
  2. 2.YangzhouChina

Personalised recommendations