Journal of Mathematical Chemistry

, Volume 42, Issue 3, pp 617–644 | Cite as

The Undecakisicosahedral Group and a 3-regular Carbon Network of Genus 26

  • Erwin Lijnen
  • Arnout Ceulemans
  • Patrick W. Fowler
  • Michel Deza

Three projective special linear groups PSL(2,p), those with p  =  5, 7 and 11, can be seen as p-multiples of tetrahedral, octahedral and icosahedral rotational point groups, respectively. The first two have already found applications in carbon chemistry and physics, as PSL(2,5) ≡ I is the rotation group of the fullerene C60 and dodecahedrane C20H20, and PSL(2,7) is the rotation group of the 56-vertex all-heptagon Klein map, an idealisation of the hypothetical genus-3 “plumber’s nightmare” allotrope of carbon. Here, we present an analysis of PSL(2,11) as the rotation group of a 220-vertex, all 11-gon, 3-regular map, which provides the basis for a more exotic hypothetical sp 2 framework of genus 26. The group structure and character table of PSL(2,11) are developed in chemical notation and a three dimensional (3D) geometrical realisation of the 220-vertex map is derived in terms of a punctured polyhedron model where each of 12 pentagons of the truncated icosahedron is connected by a tunnel to an interior void and the 20 hexagons are connected tetrahedrally in sets of 4.


PSL(211) group theory undecakisicosahedral group topology carbon allotrope 


05C10 20B25 57M20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ceulemans A., King R.B., Bovin S.A., Rogers K.M., Troisi A., Fowler P.W. (1999) J. Math. Chem. 26: 101–123CrossRefGoogle Scholar
  2. 2.
    Kraposhin V.S., private communication, see also V.S. Kraposhin, A.L. Talis and J.M. Dubois, J. Phys: Condens. Matter 14 (2002) 1–10.Google Scholar
  3. 3.
    Griess R.L. Jr., Ryba A.J.E. (1999) Bull. Am. Math. Soc. 36: 75–93CrossRefGoogle Scholar
  4. 4.
    Kostant B. (1994) Proc. Natl. Acad. Sci. USA 91: 11714–11717CrossRefGoogle Scholar
  5. 5.
    Conway J.H., Curtis R.T, Nortin S.P., Parker R.A., Wilson R.A. (1985). Atlas of Finite Groups. Clarendon Press, OxfordGoogle Scholar
  6. 6.
    Klein F. (1879) Math. Ann. 14: 428–471CrossRefGoogle Scholar
  7. 7.
    King R.B. (2002) Discrete Math. 244: 203–210CrossRefGoogle Scholar
  8. 8.
    Conder M., Dobcsányi P. (2002) J. Comb. Math. Comb. Comput. 40: 41–63Google Scholar
  9. 9.
    Lijnen E., Ceulemans A. (2004) J. Chem. Inf. Comput. Sci. 44: 1552–1564CrossRefGoogle Scholar
  10. 10.
    Conder M., Dobcsányi P. (2001) J. Comb. Theory B 81: 224–242CrossRefGoogle Scholar
  11. 11.
    Coxeter H.S.M., Moser W.O.J. (1972). Generators and Relations for Discrete Groups. 3rd edn Springer-Verlag, BerlinGoogle Scholar
  12. 12.
    Garey M.R., Johnson D.S. (1979). Computers and Intractibility: A Guide to the Theory of NP-Completeness. W.H. Freeman and Co., San Francisco, CAGoogle Scholar
  13. 13.
    Kostant B. (1995) Not. Am. Math. Soc. 42: 959–968Google Scholar
  14. 14.
    Kostant B. (1995) Sel. Math. New. Ser. 1: 165–195CrossRefGoogle Scholar
  15. 15.
    Coxeter H.S.M. (1973). Regular Polytopes. 3rd edn Dover Publications, New YorkGoogle Scholar
  16. 16.
    Fowler P.W., Hansen P., Rogers K.M., Fajtlowicz S. (1998) J. Chem. Soc. Perkin Trans. 2(7): 1531-1533Google Scholar
  17. 17.
    Fowler P.W., de La Vaissière B., Deza M. (2001) J. Mol. Graph. Model 19: 199–204CrossRefGoogle Scholar
  18. 18.
    Fowler P.W., Rogers K.M., Somers K.R., Troisi A. (1999) J. Chem. Soc. Perkin Trans. 2(10): 2023–2027Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Erwin Lijnen
    • 1
  • Arnout Ceulemans
    • 1
  • Patrick W. Fowler
    • 2
  • Michel Deza
    • 3
  1. 1.Departement ChemieK.U.LeuvenLeuvenBelgium
  2. 2.Department of ChemistryUniversity of SheffieldLeuvenUK
  3. 3.Laboratoire de Géométrie AppliquéLIGA-EuJC, École Normale SupérieureParis Cedex 05France

Personalised recommendations