Advertisement

Journal of Mathematical Chemistry

, Volume 42, Issue 3, pp 547–553 | Cite as

Pattern Search Method for Determination of DAEM Kinetic Parameters from Nonisothermal TGA Data of Biomass

  • Junmeng Cai
  • Liqun Ji
Article

The most accurate and up-to-date approach to modeling biomass pyrolysis is to adopt the distributed activation energy model (DAEM). In this study, a pattern search method to be used for the determination of DAEM kinetic parameters from the nonisothermal thermogravimetric analysis (TGA) data of biomass has been introduced. The method has been applied to the nonisothermal TGA data of peanut shell sample, and DAEM kinetic parameters of biomass samples have been determined. Calculated model results from determined kinetic parameters have been compared with nonisothermal TGA data of biomass.

Keywords

distributed activation energy model (DAEM) thermogravimetric analysis (TGA) pattern search method biomass 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Demirbas A. (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energ. Conversion Manage. 42: 1357–1378CrossRefGoogle Scholar
  2. 2.
    McKendry P. (2002) Energy production from biomass (part 2): conversion technologies. Biores. Technol. 83: 47–54CrossRefGoogle Scholar
  3. 3.
    Capart R., Khezami L., Burnham A.K. (2004) Assessment of various kinetic models for the pyrolysis of a microgranular cellulose. Thermoch. Acta 417: 79–89CrossRefGoogle Scholar
  4. 4.
    Burham A.K., Braun R.L. (1999) Global kinetic analysis of complex materials. Energ. Fuels. 13: 1–22CrossRefGoogle Scholar
  5. 5.
    Thakur D.S, Nuttall JHE (1987) Kinetics of pyrolysis of Moroccan Oil Shale by thermogravimetry. Ind. Eng. Chem. Res. 26: 1351–1356CrossRefGoogle Scholar
  6. 6.
    Ciuryla V.T., Weimer R.F., Bivans D.A., Motika S.A. (1979) Ambient-pressure thermogravimetric characterization of four different coals and their chars. Fuel. 58: 748–754CrossRefGoogle Scholar
  7. 7.
    Conesa J.A., Caballero J.A., Marcilla A., Font R. (1995) Analysis of different kinetic models in the dynamic pyrolysis of cellulose. Thermochimica Acta 254: 175–192CrossRefGoogle Scholar
  8. 8.
    Günes M., Günes S. (2002) A direct search method for determination of DAEM kinetic parameters from nonisothermal TGA data (note). Appl. Math. Computation 130: 619–628CrossRefGoogle Scholar
  9. 9.
    McGuinness M.J., Donskoi E., McElwain D.L.S (1999) Asymptotic approximations to the distributed activation energy model. Appl. Math. Lett. 12: 27–34CrossRefGoogle Scholar
  10. 10.
    Varhegyi G., Antal M.J., Jakab, Szabo E. (1997) Kinetic modeling of biomass pyrolysis. J. Anal. Appl. Pyrolysis 42: 73–87CrossRefGoogle Scholar
  11. 11.
    Lewis R.M., Torczon V., Trosst M.W. (2000) Direct search methods: then and now. J. Comp. Appl. Math. 124: 191–207CrossRefGoogle Scholar
  12. 12.
    Lewis R.M., Torczon V. (1999) Pattern search algorithms for bound constrained minimization. SIAM J. Optim. 9: 1082–1099CrossRefGoogle Scholar
  13. 13.
    Torczon V. (1997) On the convergence of pattern search algorithms. SIAM J. Optim. 7: 1–25CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.College of Power EngineeringUniversity of Shanghai for Science and TechnologyShanghaiP. R. China
  2. 2.College of ManagementUniversity of Shanghai for Science and TechnologyShanghaiP. R. China
  3. 3.Biomass Energy Engineering Research Center, School of Agriculture & BiologyShanghai Jiao Tong UniversityShanghaiP.R. China

Personalised recommendations