Advertisement

Journal of Mathematical Chemistry

, Volume 42, Issue 3, pp 433–446 | Cite as

Topological Estimation of Aromatic Stabilities of Polyacenes and Helicenes: Modeling of Resonance Energy and Benzene Character

  • Padmakar V. Khadikar
  • Jyoti Singh
  • Maya Ingle
Article

The distance-based topological indices viz Wiener (W)-, Szeged (Sz)-, Padmakar-Ivan (PI)- and Sadhana (Sd)-indices have been used for estimating aromatic stabilities as well as % benzene character of polyacenes and helicenes. Excellent models are obtained in combined set and there was no need to split the data set into polyacenes and helicenes. The newly introduced Sd index was found the best index among all the four indices used. In bi-parametric modeling with the combination of the Sd index with the PI index yielded excellent results. The results are discussed critically on the basis of variety of statistical parameters.

Keywords

aromatic stability polyacenes helicenes Padmakar-Ivan index Sadhana index regression analysis topological index resonance energy % benzene character 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Randic M., Benjamin M., Trinajstic N. (1986) On the aromatic stabilities of polyacenes and helicenes croatia. Chem. Acta 59(2): 345Google Scholar
  2. 2.
    Clar E. (1964). Polycyclic Hydrocarbons. Academic Press, LondonGoogle Scholar
  3. 3.
    Martin R.H. (1974) Angew. Chem. Int. Edit. English 13: 649CrossRefGoogle Scholar
  4. 4.
    Clar E., Robertson J.M., Schlogel R., Schmidt W. (1981) J. Amer. Chem. Soc. 103: 1320CrossRefGoogle Scholar
  5. 5.
    Lee M.L., Novotny M.V., Bartle K.D. (1981). Analytical Chemistry of Polycyclic Aromatic Hydrocarbons. Academic, New YorkGoogle Scholar
  6. 6.
    Balaban A.T. (1982) Pure Appl. Chem. 54: 1075Google Scholar
  7. 7.
    Angliker H., Rommel E., Wirz J. (1982) Chem. Phys. Lett. 87: 208CrossRefGoogle Scholar
  8. 8.
    Pataki J., Harvey R.G. (1982) J. Org. Chem. 47: 20CrossRefGoogle Scholar
  9. 9.
    Ray J.K., Harvey R.G. (1982) J. Org. Chem. 47: 3335CrossRefGoogle Scholar
  10. 10.
    H. Meier, T. Molz, U. Merkle, E. Echter and M. Lorch, Liebigs Ann. Chem. (1982) 314.Google Scholar
  11. 11.
    Cyvin B.N., Klaeboe P., Whitner J.C., Cyvin S.J. (1982) Z. Naturforsch. 37a: 251Google Scholar
  12. 12.
    Knop J.V., Szymanski K., Jericevic Z., Trinajstic N. (1983) J. Comput. Chem. 4: 23CrossRefGoogle Scholar
  13. 13.
    Nicolaides D.N., K.E. Litinas, J. Chem. Res. (S) (1983) 57.Google Scholar
  14. 14.
    Mondal S., Bandyopadhyay T.K., Bhattacharaya A.J. (1983) Ind. J. Chem. 22B: 448Google Scholar
  15. 15.
    Yamamoto K., Harada T., Nakazaki M., Naka T., Kai Y., Harada S., Kasai N. (1983) J. Amer. Chem. Ber. 105: 7171CrossRefGoogle Scholar
  16. 16.
    Staab H., Diederich F. (1983) Chem. Ber. 116: 3487CrossRefGoogle Scholar
  17. 17.
    Klasinc L., Kovac B., Gusten H. (1983) Pure Appl. Chem. 55: 289Google Scholar
  18. 18.
    Balaban A.T., Tomescu I. (1983) Math. Chem. (Mulheim/Ruhr) 14: 155Google Scholar
  19. 19.
    El-Basil S. (1984) Croat. Chem. Acta 57: 1Google Scholar
  20. 20.
    Randic M., Trinajstic N. (1984) J. Amer. Chem. Soc. 106: 4428CrossRefGoogle Scholar
  21. 21.
    J.R. Dias, J. Chem. Inf. Comput. Sci. 22 (1982) 15; ibid. 22 (1982) 139; ibid. 24 (1984) 124.Google Scholar
  22. 22.
    J.V. Knop, W.R. Muller, K. Szymanski and N. Trinajstic, Computer Generation of Some Classes of Molecules (SKTH, Zagreb, 1985).Google Scholar
  23. 23.
    D.R. Boyd and D.M. Jerina, in: Small Ring Heterocycles, Part III Ed. A. Hassner (Wiley, New York, 1985), p. 197.Google Scholar
  24. 24.
    Aleksejczyk R.A., Berchtold G.A., Braun A.G. (1985) J. Amer. Chem. Soc. 107: 2554CrossRefGoogle Scholar
  25. 25.
    Gribble G.W., Lettoullier C.S., Sibi M.P., Allen R.W. (1985) J. Org. Chem. 50: 1611CrossRefGoogle Scholar
  26. 26.
    Levy L.A., Sashikumar V.P. (1985) J. Org. Chem. 50: 1760CrossRefGoogle Scholar
  27. 27.
    Dias J.R. (2004) Theoret. Chim. Acta in Press.Google Scholar
  28. 28.
    Wiener H. (1947) J. Am. Chem. Soc. 69: 17CrossRefGoogle Scholar
  29. 29.
    Khadikar P.V., Deshpande N.V., Kale P.P., Dabrynin A., Gutman I., Domotor G. (1995) The Szeged Index and an Analogy with the Wiener J. Index. Chem. Inf. Comput. Sci. 35: 545CrossRefGoogle Scholar
  30. 30.
    Gutman I., Khadikar P.V., Rajput P.V., Karmarkar S. (1995) The szeged index of polyacenes. J. Serb. Chem. Soc. 60: 759Google Scholar
  31. 31.
    Khadikar P.V., Karmarkar S., Joshi S., Gutman I. (1996) Estimation of protonation constants of salicylhydroxamic acids by means of the wiener topological index. J. Serb. Chem. Soc. 61: 89Google Scholar
  32. 32.
    Khadikar P.V., Karmarkar S., Agrawal V.K., Singh J., Shrivastava A., Lukovits I., Diudea M.V. (2005) SzegedIndex – applications for drug modeling. Lett. Drug Design Discovery 2: 606CrossRefGoogle Scholar
  33. 33.
    P.V. Khadikar, V. Sharma, S. Karmarkar and C.T. Supuran, QSAR studies on Benzene sulfonamide carbonic anhydrase inhibitors: need of hydrophobic parameter for topological modeling of binding constants of sulfonamides to human CA-II, Bioorg. Med. Chem. Lett. 15 (2005) 15 923.Google Scholar
  34. 34.
    Khadikar P.V., Sharma V., Karmarkar S., Supuran C.T. (2005) Novel use of chemical shift in NMR as molecular descriptor: a first report on modeling carbonic anhydrase inhibitory activity and related parameters. Bioorg. Med. Chem. Lett. 15: 931CrossRefGoogle Scholar
  35. 35.
    Jaiswal M., Khadikar P.V. (2005) Use of distance-based topological indices for the estimation of 13C NMR shifts : a case of Benzene derivatives. J. Indian Chem. Soc. 82: 247Google Scholar
  36. 36.
    P.V. Khadikar, S. Singh, M. Jaiswal and D. Mandoli, Topological estimation of electronic absorption bands of arene absorption spectra as a tool for modeling their toxcity environmental pollution, Bioorg. Med. Chem. Lett. 14 (2004) 4795.Google Scholar
  37. 37.
    Chaterjee S., Hadi A.S., Price B. (2000). Regression Analysis by Examples. 3rd edn. Wiley, New YorkGoogle Scholar
  38. 38.
    C. Hansch, in: Correlation Analysis in Chemistry, Vol. 397 Eds. N.B. Chapman and J. Shorter) (Plenum Press, NY, 1978). N. Draper and H. Smith, Applied Regression Analysis (Wiley, NY, 1966).Google Scholar
  39. 39.
    Devillers J., Balaban A.T. (2000). Topological Indices and Related Descriptors in QSAR and QSPR. Gorden & Breach, Williston VTGoogle Scholar
  40. 40.
    Pogliani L. (1994) Amino acids. J. Phys. Chem. 98: 1494CrossRefGoogle Scholar
  41. 41.
    Randic M. (1998) Acta Chem. Slov. 45: 239Google Scholar
  42. 42.
    Randic M. (1997) J. Chem. Inf. Comput. Sci. 37: 672CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Padmakar V. Khadikar
    • 1
  • Jyoti Singh
    • 2
  • Maya Ingle
    • 3
  1. 1.Research DivisionLaxmi Fumigation and Pest Control, Pvt. Ltd.IndoreIndia
  2. 2.Department of ChemistryA.P.S. UniversityRewaIndia
  3. 3.Computer CenterDevi Ahilya VishwavidyalayaIndoreIndia

Personalised recommendations