Advertisement

Journal of Mathematical Chemistry

, Volume 42, Issue 3, pp 387–395 | Cite as

Exact Solutions of the Schrödinger Equation with Position-dependent Effective Mass via General Point Canonical Transformation

  • Cevdet Tezcan
  • Ramazan Sever
Article

Exact solutions of the Schrödinger equation are obtained for the Rosen–Morse and Scarf potentials with the position-dependent effective mass by appliying a general point canonical transformation. The general form of the point canonical transformation is introduced by using a free parameter. Two different forms of mass distributions are used. A set of the energy eigenvalues of the bound states and corresponding wave functions for target potentials are obtained as a function of the free parameter.

Keywords

position-dependent mass point canonical transformation effective mass Schrödinger equation Rosen–Morse potential Scarf potential 

PACS numbers

03.65.-w 03.65.Ge 12.39.Fd 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Bastard, Wave Mechanics Applied to Heterostructure (Les Ulis, Les Edition de Physique, 1989).Google Scholar
  2. 2.
    P. Harrison, Quantum Wells, Wires and Dots (New York, 2000), L. Serra and E. Lipparin, Europhys. Lett. 40 (1997) 667.Google Scholar
  3. 3.
    Barranco M., Pi M., Gatica S.M., Hernandez E.S., Navarro J. (1997). Phys. Rev. B56:8997Google Scholar
  4. 4.
    Arias de Saavedra F., Boronat J., Poll A., Fabrocini A. (1997). Phys. Rev. B50:4248CrossRefGoogle Scholar
  5. 5.
    C. Weisbuch and B. Vinter, Quantum Semiconductor Heterostructure (New York, Academic Press, 1993) and references therein; O. Von Roos, Phys. Rev. B27 (1983) 7547; O. Von Roos and H. Mavromatis, Phys. Rev. B31 (1985) 2294; R.A. Morrow, Phys. Rev. B35 (1987) 8074; V. Trzeciakowski, Phys. Rev. B38 (1988) 4322; I. Galbraith and G. Duygan, Phys. Rev. B38 (1988) 10057; K. Young, Phys. Rev. B39 (1989) 13434; G.T. Einvoll, P.C. Hemmer and J. Thomsen, Phys. Rev. B42 (1990), 3485; G. T. Einvoll, Phys. Rev. B42 (1990) 3497.Google Scholar
  6. 6.
    Yu J., Dong S.H., Sun G.H. (1999). Phys. Lett. A322:290Google Scholar
  7. 7.
    Dong S.H., Lozada-Cassou M. (2005). Phys. Lett. 337:313CrossRefGoogle Scholar
  8. 8.
    A.D. Alhaidari, Phys. Rev. A66 042116; A.D. Alhaidari, Int. J. Theor. Phys. 42 (2003) 2999.Google Scholar
  9. 9.
    Gönül B., Özer O., Gönül B., Üzgün F. (2002). Mod. Phys. Lett. A1:2453Google Scholar
  10. 10.
    Yu J., Dong J. (2004). J. Phys. Lett. A325:194CrossRefGoogle Scholar
  11. 11.
    Chen G., Chen Z.D. (2004). Phys. Lett. A331:312Google Scholar
  12. 12.
    Bencheikh K., Berkane S., Bouizane S. (2004). J. Phys. A: Math. Gen. 37:10719CrossRefGoogle Scholar
  13. 13.
    Jiang L., Yi L., Jia L.C.S. (2005). Phys. Lett. A345:279Google Scholar
  14. 14.
    L. Dekar, T. Chetouani and F. Hammann, J. Phys. A: Math. Gen. 39 (1998) 2551; L. Dekar, T. Chetouani and F. Hammann, Phys. Rev. A59 (1999) 107.Google Scholar
  15. 15.
    Plastino A.R., Rigo A., Casas M., Plastino A. (1999). Phys. Rev. A60:4318Google Scholar
  16. 16.
    Milanović V., Ikonić Z. (1999). J. Phys. A: Math. Gen. 32:7001CrossRefGoogle Scholar
  17. 17.
    de S. Dutra and C.A.S. Almeida Phys. Lett. A275 (2000) 25; A. de S. Dutra, M.B. Hott and C.A.S. Almeida, Europhys. Lett. 62 (2003) 8.Google Scholar
  18. 18.
    R. Koc, M. Koca, and E. Körcük, Eur. J. Phys. A: Math. Gen. 35, (2002), L527; R. Koc and M. Koca, J. Phys. A: Math. Gen. 36 (2003) 8105.Google Scholar
  19. 19.
    B. Roy and P. Roy, J. Phys. A: Math. Gen. 36, (2003) 8105; B. Roy and P. Roy, Phys. Lett. A340, (2005) 70.Google Scholar
  20. 20.
    Quesne C., Tkachuk V.M. (2004). J. Phys. A: Math. Gen 37:4267CrossRefGoogle Scholar
  21. 21.
    Ou Y.C., Cao Z.Q., Shen Q.H. (2004). J. Phys. A: Math. Gen. 37:4283CrossRefGoogle Scholar
  22. 22.
    B. Bagchi, P. Gorain, C. Quesne and R. Roychoudhury, Mod. Phys. Lett. A19, (2004) 2765; B. Bagchi, P. Gorain, C. Quesne and R. Roychoudhury, Czech. J. Phys. 54 (2004) 1019; B. Bagchi, C. Quesne and V.M. Tkachul, J. Phys. A: Math. Gen. 38 (2004) 2929.Google Scholar
  23. 23.
    Chen Z.D., Chen G. (2005). Physica Scripta 72:11CrossRefGoogle Scholar
  24. 24.
    De R., Dutt R., Sukhatme U. (1992). J. Phys. A: Math. Gen. 25:L843CrossRefGoogle Scholar
  25. 25.
    Dutt R., Khare A., Varshni Y.P. (1995). J. Phys. A: Math. Gen. 28:L107CrossRefGoogle Scholar
  26. 26.
    Kocak M., Zorba I., Gönül B. (2002). Mod. Phys. Lett A16:2127Google Scholar
  27. 27.
    C.S. Jia, Y.F. Diao, M. Li, Q.B. Yang, L.T. Sun and R.Y. Huang, J. Phys. A: Math. Gen. 37 (2004) 11275.Google Scholar
  28. 28.
    Egrifes H., Demirhan D., Büyükkilic F. (1989). Phys. Scr. 60:195CrossRefGoogle Scholar
  29. 29.
    C.S. Jia and Y. Li, J. Phys. A: Math. Gen. 28, 2004, L107; J.Y. Liu and L.T. Sun, Phys. Lett. A331 (2003) 115.Google Scholar
  30. 30.
    Egrifes H., Demirhan D., Büyükkilic F. (2000). Phys. Lett. A275:229CrossRefGoogle Scholar
  31. 31.
    Arai A. (1991). J. Math. Anal. Appl. 158:63CrossRefGoogle Scholar
  32. 32.
    de A., Dutra S. (2005). Phys. Lett. A339:252Google Scholar
  33. 33.
    Li L.Z., Diao Y.F., Liu J.Y., Jia C.S. (2004). Phys. Lett. A333:212Google Scholar
  34. 34.
    Zhang X.C., Liu Q.W., Jia C.S., Wang L.Z. (2005). Phys. Lett. A340:59Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Faculty of EngineeringBaşkent UniversityAnkaraTurkey
  2. 2.Department of PhysicsMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations